A quantum spin Hall (QSH) insulator is a novel twodimensional quantum state of matter that features quantized Hall conductance in the absence of a magnetic field, resulting from topologically protected dissipationless edge states that bridge the energy gap opened by band inversion and strong spin-orbit coupling 1,2 . By investigating the electronic structure of epitaxially grown monolayer 1T'-WTe 2 using angle-resolved photoemission (ARPES) and first-principles calculations, we observe clear signatures of topological band inversion and bandgap opening, which are the hallmarks of a QSH state. Scanning tunnelling microscopy measurements further confirm the correct crystal structure and the existence of a bulk bandgap, and provide evidence for a modified electronic structure near the edge that is consistent with the expectations for a QSH insulator. Our results establish monolayer 1T'-WTe 2 as a new class of QSH insulator with large bandgap in a robust two-dimensional materials family of transition metal dichalcogenides (TMDCs).A two-dimensional (2D) topological insulator (TI), or a quantum spin Hall insulator, is characterized by an insulating bulk and a conductive helical edge state, in which carriers with different spins counter-propagate to realize a geometry-independent edge conductance 2e 2 /h (refs 1,2). The only scattering channel for such helical edge current is back scattering, which is prohibited by time reversal symmetry, making QSH insulators a promising material candidate for spintronic and other applications.The prediction of the QSH effect in HgTe quantum wells sparked intense research efforts to realize the QSH state [3][4][5][6][7][8][9][10][11] . So far only a handful of QSH systems have been fabricated, mostly limited to quantum well structures of three-dimensional (3D) semiconductors such as HgTe/CdTe (ref.3) and InAs/GaSb (ref. 6). Edge conduction consistent with a QSH state has been observed 3,6,12 . However, the behaviour under a magnetic field, where time reversal symmetry is broken, cannot be explained within our current understanding of the QSH effect 13,14 . There have been continued efforts to predict and investigate other material systems to further advance the understanding of this novel quantum phenomenon 5,[7][8][9]15 . So far, it has been difficult to make a robust 2D material with a QSH state, a platform needed for widespread study and application. The small bandgaps exhibited by many candidate systems, as well as their vulnerability to strain, chemical adsorption, and element substitution, make them impractical for advanced spectroscopic studies or applications. For example, a QSH insulator candidate stanene, a monolayer analogue of graphene for tin, grown on Bi 2 Se 3 becomes topologically trivial due to the modification of its band structure by the underlying substrate 11,16 . Free-standing Bi film with 2D bonding on a cleaved surface has shown edge conduction 9 , but its topological nature is still debated 17 . It takes 3D out-of-plane bonding with the substrate and large stra...
A prerequisite for future graphene nanoribbon (GNR) applications is the ability to fine-tune the electronic band gap of GNRs. Such control requires the development of fabrication tools capable of precisely controlling width and edge geometry of GNRs at the atomic scale. Here we report a technique for modifying GNR band gaps via covalent self-assembly of a new species of molecular precursors that yields n = 13 armchair GNRs, a wider GNR than those previously synthesized using bottom-up molecular techniques. Scanning tunneling microscopy and spectroscopy reveal that these n = 13 armchair GNRs have a band gap of 1.4 eV, 1.2 eV smaller than the gap determined previously for n = 7 armchair GNRs. Furthermore, we observe a localized electronic state near the end of n = 13 armchair GNRs that is associated with hydrogen-terminated sp(2)-hybridized carbon atoms at the zigzag termini.
Observing the intricate chemical transformation of an individual molecule as it undergoes a complex reaction is a long-standing challenge in molecular imaging. Advances in scanning probe microscopy now provide the tools to visualize not only the frontier orbitals of chemical reaction partners and products, but their internal covalent bond configurations as well. We used noncontact atomic force microscopy to investigate reaction-induced changes in the detailed internal bond structure of individual oligo-(phenylene-1,2-ethynylenes) on a (100) oriented silver surface as they underwent a series of cyclization processes. Our images reveal the complex surface reaction mechanisms underlying thermally induced cyclization cascades of enediynes. Calculations using ab initio density functional theory provide additional support for the proposed reaction pathways.
Bandgap engineering is used to create semiconductor heterostructure devices that perform processes such as resonant tunnelling and solar energy conversion. However, the performance of such devices degrades as their size is reduced. Graphene-based molecular electronics has emerged as a candidate to enable high performance down to the single-molecule scale. Graphene nanoribbons, for example, can have widths of less than 2 nm and bandgaps that are tunable via their width and symmetry. It has been predicted that bandgap engineering within a single graphene nanoribbon may be achieved by varying the width of covalently bonded segments within the nanoribbon. Here, we demonstrate the bottom-up synthesis of such width-modulated armchair graphene nanoribbon heterostructures, obtained by fusing segments made from two different molecular building blocks. We study these heterojunctions at subnanometre length scales with scanning tunnelling microscopy and spectroscopy, and identify their spatially modulated electronic structure, demonstrating molecular-scale bandgap engineering, including type I heterojunction behaviour. First-principles calculations support these findings and provide insight into the microscopic electronic structure of bandgap-engineered graphene nanoribbon heterojunctions.
Bottom-up synthesized graphene nanoribbons and graphene nanoribbon heterostructures have promising electronic properties for high-performance field-effect transistors and ultra-low power devices such as tunneling field-effect transistors. However, the short length and wide band gap of these graphene nanoribbons have prevented the fabrication of devices with the desired performance and switching behavior. Here, by fabricating short channel (L ch ~ 20 nm) devices with a thin, high-κ gate dielectric and a 9-atom wide (0.95 nm) armchair graphene nanoribbon as the channel material, we demonstrate field-effect transistors with high on-current (I on > 1 μA at V d = −1 V) and high I on /I off ~ 105 at room temperature. We find that the performance of these devices is limited by tunneling through the Schottky barrier at the contacts and we observe an increase in the transparency of the barrier by increasing the gate field near the contacts. Our results thus demonstrate successful fabrication of high-performance short-channel field-effect transistors with bottom-up synthesized armchair graphene nanoribbons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.