Conventional model predictive control (MPC) of power converter has been widely applied to power inverters achieving high performance, fast dynamic response, and accurate transient control of power converter. However, the MPC strategy is highly reliant on the accuracy of the inverter model used for the controlled system. Consequently, a parameter or model mismatch between the plant and the controller leads to a sub-optimal performance of MPC. In this paper, a new strategy called model-free predictive control (MF-PC) is proposed to improve such problems. The presented approach is based on a recursive least squares algorithm to identify the parameters of an auto-regressive with exogenous input (ARX) model. The proposed method provides an accurate prediction of the controlled variables without requiring detailed knowledge of the physical system. This new approach and is realized by employing a novel state space identification algorithm into the predictive control structure. The performance of the proposed model-free predictive control method is compared with conventional MPC. The simulation and experimental results show that the proposed method is totally robust against parameters and model changes compared with the conventional model based solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.