This work is devoted to the bending analysis of functionally graded (FG) nano-scale plate by using the nonlocal mixed variational formula under simply supported edge conditions. According to Eringen’s nonlocal elasticity theory, the mixed formula is utilized in order to obtain the governing equations. The system of equations is derived by using the principle of virtual work. The governing equations include both the small and the mechanical effects. The impact of the small-scale parameter, aspect and thickness nano-scale plate ratios, and gradient index on the displacement and stresses are explored, numerically presented, and discussed in detail. Different comparisons are made to check the precision and validity of the bending outcomes obtained from the present analysis of FG nano-scale plates. Parametric examinations are then performed to inspect the impacts of the thickness of the plate on the by and large mechanical reaction of the practically evaluated plates. The displayed outcomes are valuable for the configuration procedures of keen structures and examination from materials.
A simple quasi-3D sinusoidal shear and normal deformations theory for the hygro-thermo-mechanical bending of functionally graded piezoelectric (FGP) plate is developed under simply-supported edge conditions. The governing equations are deduced based on the principle of virtual work. The exact solutions for FGP plate are obtained. The current study investigates the effect of some parameters, like piezoelectricity, hygrothermal parameter, gradient index and electric loading on the mechanical and electric displacements, electric potential and stresses. They are explored analytically and numerically presented and discussed in detail. The numerical results clearly show the effect of piezoelectric and hygrothermal parameter on the FGP plate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.