Breast cancer is a complex disease which is found as the second cause of cancer-associated death among women. Accumulating of evidence indicated that various factors (i.e., gentical and envirmental factors) could be associated with initiation and progression of breast cancer. Diagnosis of breast cancer patients in early stages is one of important aspects of breast cancer treatment. Among of various diagnosis platforms, imaging techniques are main diagnosis approaches which could provide valuable data on patients with breast cancer. It has been showed that various imaging techniques such as mammography, magnetic resonance imaging (MRI), positron-emission tomography (PET), Computed tomography (CT), and single-photon emission computed tomography (SPECT) could be used for diagnosis and monitoring patients with breast cancer in various stages. Beside, imaging techniques, utilization of biochemical biomarkers such as proteins, DNAs, mRNAs, and microRNAs could be employed as new diagnosis and therapeutic tools for patients with breast cancer. Here, we summarized various imaging techniques and biochemical biomarkers could be utilized as diagnosis of patients with breast cancer. Moreover, we highlighted microRNAs and exosomes as new diagnosis and therapeutic biomarkers for monitoring patients with breast cancer.
Gene therapy is known as one of the most advanced approaches for therapeutic prospects ranging from tackling genetic diseases to combating cancer. In this approach, different viral and nonviral vector systems such as retrovirus, lentivirus, plasmid and transposon have been designed and employed. These vector systems are designed to target different therapeutic genes in various tissues and cells such as tumor cells. Therefore, detection of the vectors containing therapeutic genes and monitoring of response to the treatment are the main issues that are commonly faced by researchers. Imaging techniques have been critical in guiding physicians in the more accurate and precise diagnosis and monitoring of cancer patients in different phases of malignancies. Imaging techniques such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT) are non-invasive and powerful tools for monitoring of the distribution of transgene expression over time and assessing patients who have received therapeutic genes. Here, we discuss most recent advances in cancer gene therapy and molecular approaches as well as imaging techniques that are utilized to detect cancer gene therapeutics and to monitor the patients' response to these therapies worldwide, particularly in Iranian Academic Medical Centers and Hospitals.Cancer Gene Therapy advance online publication, 18 November 2016; doi:10.1038/cgt.2016.62.
Cancer is one of the world's most concerning health problems and poses many challenges in the range of approaches associated with the treatment of cancer. Current understanding of this disease brings to the fore a number of novel therapies that can be useful in the treatment of cancer. Among them, gene and cell therapies have emerged as novel and effective approaches. One of the most important challenges for cancer gene and cell therapies is correct monitoring of the modified genes and cells. In fact, visual tracking of therapeutic cells, immune cells, stem cells and genetic vectors that contain therapeutic genes and the various drugs is important in cancer therapy. Similarly, molecular imaging, such as nanosystems, fluorescence, bioluminescence, positron emission tomography, single photon-emission computed tomography and magnetic resonance imaging, have also been found to be powerful tools in monitoring cancer patients who have received therapeutic cell and gene therapies or drug therapies. In this review, we focus on these therapies and their molecular imaging techniques in treating and monitoring the progress of the therapies on various types of cancer.
<b><i>Introduction:</i></b> Radiomics now has significant momentum in the era of precision medicine. Glioma is one of the pathologies that has been extensively evaluated by radiomics. However, this technique has not been incorporated into clinical practice. In this systematic review, we selected and reviewed the published studies about glioma grading by radiomics to evaluate this technique’s feasibility and its challenges. <b><i>Material and Methods:</i></b> Using seven different search strings, we considered all published English manuscripts from 2015 to September 2020 in PubMed, Embase, and Scopus databases. After implementing the exclusion and inclusion criteria, the final papers were selected for the methodological quality assessment based on our in-house Modified Radiomics Standard Scoring (RQS) containing 43 items (minimum score of 0, maximum score of 44). Finally, we offered our opinion about the challenges and weaknesses of the selected papers. <b><i>Results:</i></b> By our search, 1,177 manuscripts were found (485 in PubMed, 343 in Embase, and 349 in Scopus). After the implementation of inclusion and exclusion criteria, 18 papers remained for the final analysis by RQS. The total RQS score ranged from 26 (59% of maximum possible score) to 43 (97% of maximum possible score) with a mean of 33.5 (76% of maximum possible score). <b><i>Conclusion:</i></b> The current studies are promising but very heterogeneous in design with high variation in the radiomics software, the number of extracted features, the number of selected features, and machine learning models. All of the studies were retrospective in design; many are based on small datasets and/or suffer from class imbalance and lack of external validation datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.