In this manuscript, we compare two commonly used methods to perform cortical mapping based on myelination of the human neocortex. T1w/T2w and R1 maps with matched total acquisition times were obtained from a young cohort in randomized order and using a test–retest design. Both methodologies showed cortical myelin maps that enhanced similar anatomical features, namely primary sensory regions known to be myelin rich. T1w/T2w maps showed increased robustness to movement artifacts in comparison to R1 maps, while the test re-test reproducibility of both methods was comparable. Based on Brodmann parcellation, both methods showed comparable variability within each region. Having parcellated cortical myelin maps into VDG11b areas of 4a, 4p, 3a, 3b, 1, 2, V2, and MT, both methods behave identically with R1 showing an increased variability between subjects. In combination with the test re-test evaluation, we concluded that this increased variability between subjects reflects relevant tissue variability. A high level of correlation was found between the R1 and T1w/T2w regions with regions of higher deviations being co-localized with those where the transmit RF field deviated most from its nominal value. We conclude that R1 mapping strategies might be preferable when studying different population cohorts where cortical properties are expected to be altered while T1w/T2w mapping will have advantages when performing cortical based segmentation.
The onco-metabolite 2-hydroxyglutarate (2HG), a biomarker of IDH-mutant gliomas, can be detected with 1H MR spectroscopy (1H-MRS). Recent studies showed measurements of 2HG at 7T with substantial gain in signal to noise ratio (SNR) and spectral resolution, offering higher specificity and sensitivity for 2HG detection. In this study, we assessed the sensitivity of semi-localized by adiabatic selective refocusing (sLASER) and J-difference MEsher-GArwood-semi-LASER (MEGA-sLASER) for 2HG detection at 7T. We performed spectral editing at long TE using a TE-optimized sLASER sequence (110 ms) and J-difference spectroscopy using MEGA-sLASER (TE = 74ms) in phantoms with different 2HG concentrations to assess the sensitivity of 2HG detection. The robustness of the methods against B0 inhomogeneity was investigated. Moreover, the performance of these two techniques was evaluated in four patients with IDH1-mutated glioma. In contrary to MEGA-sLASER, sLASER was able to detect 2HG concentration as low as 0.5 mM. In case of a composite phantom containing 2HG with overlapping metabolites, MEGA-sLASER provided a clean 2HG signal with higher fitting reliability (lower %CRLB). The results demonstrate that sLASER is more robust against field inhomogeneities and experimental or motion-related artifacts which promotes to adopt sLASER in clinical implementations.
Background and Purpose: Magnetic resonance spectroscopy (MRS) – a method to analyse metabolites in vivo – has been utilized in several studies of brain glioma biomarkers at lower fields strengths. At ultrahigh field strengths, MRS provides improved signal-to-noise-ratio and spectral resolution, but 7T studies on patients with gliomas are sparse. The purpose of this exploratory study was to evaluate the potential clinical implication of single-voxel MRS at 7T to assess metabolic information of lesions in a pilot cohort of patients with grade II and III gliomas. Methods: We scanned seven patients and seven healthy controls using the semi-localization by adiabatic-selective refocusing sequence on a Philips Achieva 7T system with a standard dual-transmit head coil. The metabolic ratios were calculated relative to water and total creatine. Additionally, 2-hydroxyglutarate (2-HG) MRS was carried out in four of the patients and 2-HG concentration was calculated relative to water. Results: When comparing tumour data to control regions in both patients and healthy controls, we found that choline/creatine and myo-inositol/creatine was significantly increased and that N-acetylaspartate/creatine and the neurotransmitter glutamate/creatine was significantly decreased. N-acetylaspartate/water and glutamate/water were also significantly decreased. Lactate/water and lactate/creatine showed an increase, although not significant. GABA/water was significantly decreased, but GABA/creatine was not. MRS spectra showed the presence of 2-HG in three of the four patients studied. Three of the patients, including the MRS 2-HG negative one, were operated and all of them had the IDH mutation. Conclusion: Our findings were consistent with existing literature on 3T- and 7T-MRS.
Single-voxel MRS (SV MRS) requires robust volume localization aswell as optimized crusher and phase-cycling schemes to reduce artifacts arising from signal outside the volume of interest. However, due to local magnetic field gradients (B 0 inhomogeneities), signal that was dephased by the crusher gradients during acquisition might rephase, leading to artifacts in the spectrum. Here, we analyzed this mechanism, aiming to identify the source of signals arising from unwanted coherence pathways (spurious signals) in SV MRS from a B 0 map. Methods:We investigated all possible coherence pathways associated with imperfect localization in a semi-localized by adiabatic selective refocusing (semi-LASER) sequence for potential rephasing of signals arising from unwanted coherence pathways by a local magnetic field gradient. We searched for locations in the B 0 map where the signal dephasing due to external (crusher) and internal (B 0 ) field gradients canceled out. To confirm the mechanism, SV-MR spectra (TE = 31 ms) and 3D-CSI data with the same volume localization as the SV experiments were acquired from a phantom and 2 healthy volunteers. Results: Our analysis revealed that potential sources of spurious signals were scattered over multiple locations throughout the brain. This was confirmed by 3D-CSI data. Moreover, we showed that the number of potential locations where spurious signals could originate from monotonically decreases with crusher strength. Conclusion:We proposed a method to identify the source of spurious signals in SV 1 H MRS using a B 0 map. This can facilitate MRS sequence design to be less sensitive to experimental artifacts.
Background and Purpose: Magnetic resonance spectroscopy (MRS)—a method of analysing metabolites in vivo—has been utilized in several studies of brain glioma biomarkers at lower field strengths. At ultra-high field strengths, MRS provides an improved signal-to-noise-ratio and spectral resolution, but 7T studies on patients with gliomas are sparse. The purpose of this exploratory study was to evaluate the potential clinical implication of the use of single-voxel MRS at 7T to assess metabolic information on lesions in a pilot cohort of patients with grade II and III gliomas. Methods: We scanned seven patients and seven healthy controls using the semi-localization by adiabatic-selective refocusing sequence on a Philips Achieva 7T system with a standard dual-transmit head coil. The metabolic ratios were calculated relative to water and total creatine. Additionally, 2-hydroxyglutarate (2-HG) MRS was carried out in four of the patients, and the 2-HG concentration was calculated relative to water. Results: When comparing the tumour data to control regions in both patients and healthy controls, we found that the choline/creatine and myo-inositol/creatine ratios were significantly increased and that the N-acetylaspartate/creatine and the neurotransmitter glutamate/creatine ratios were significantly decreased. The N-acetylaspartate/water and glutamate/water ratios were also significantly decreased. The lactate/water and lactate/creatine ratios showed increases, although not significant. The GABA/water ratio was significantly decreased, but the GABA/creatine ratio was not. MRS spectra showed the presence of 2-HG in three of the four patients studied. Three of the patients, including the MRS 2-HG-negative patient, were operated on, and all of them had the IDH mutation. Conclusion: Our findings were consistent with the existing literature on 3T and 7T MRS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.