Background The autonomic nervous system (ANS) plays a central role in pregnancy-induced adaptations, and failure in the required adaptations is associated with adverse neonatal and maternal outcomes. Mapping maternal ANS function in healthy pregnancy may help to understand ANS function. Objective This study aimed to systematically review studies on the use of heart rate variability (HRV) monitoring to measure ANS function during pregnancy and determine whether specific HRV patterns representing normal ANS function have been identified during pregnancy. Methods The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline was used to guide the systematic review. The CINAHL, PubMed, SCOPUS, and Web of Science databases were searched to comprehensively identify articles without a time span limitation. Studies were included if they assessed HRV in healthy pregnant individuals at least once during pregnancy or labor, with or without a comparison group (eg, complicated pregnancy). Quality assessment of the included literature was performed using the National Heart, Lung, and Blood Institute (NHLBI) tool. A narrative synthesis approach was used for data extraction and analysis, as the articles were heterogenous in scope, approaches, methods, and variables assessed, which precluded traditional meta-analysis approaches being used. Results After full screening, 8 studies met the inclusion criteria. In 88% (7/8) of the studies, HRV was measured using electrocardiogram and operationalized in 3 different ways: linear frequency domain (FD), linear time domain (TD), and nonlinear methods. FD was measured in all (8/8), TD in 75% (6/8), and nonlinear methods in 25% (2/8) of the studies. The assessment duration varied from 5 minutes to 24 hours. TD indexes and most of the FD indexes decreased from the first to the third trimesters in the majority (5/7, 71%) of the studies. Of the FD indexes, low frequency (LF [nu]) and the LF/high frequency (HF) ratio showed an ascending trend from early to late pregnancy, indicating an increase in sympathetic activity toward the end of the pregnancy. Conclusions We identified 3 HRV operationalization methods along with potentially indicative HRV patterns. However, we found no justification for the selection of measurement tools, measurement time frames, and operationalization methods, which threaten the generalizability and reliability of pattern findings. More research is needed to determine the criteria and methods for determining HRV patterns corresponding to ANS functioning in healthy pregnant persons.
Background Preterm birth (PTB), a common pregnancy complication, is responsible for 35% of the 3.1 million pregnancy-related deaths each year and significantly affects around 15 million children annually worldwide. Conventional approaches to predict PTB lack reliable predictive power, leaving >50% of cases undetected. Recently, machine learning (ML) models have shown potential as an appropriate complementary approach for PTB prediction using health records (HRs). Objective This study aimed to systematically review the literature concerned with PTB prediction using HR data and the ML approach. Methods This systematic review was conducted in accordance with the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) statement. A comprehensive search was performed in 7 bibliographic databases until May 15, 2021. The quality of the studies was assessed, and descriptive information, including descriptive characteristics of the data, ML modeling processes, and model performance, was extracted and reported. Results A total of 732 papers were screened through title and abstract. Of these 732 studies, 23 (3.1%) were screened by full text, resulting in 13 (1.8%) papers that met the inclusion criteria. The sample size varied from a minimum value of 274 to a maximum of 1,400,000. The time length for which data were extracted varied from 1 to 11 years, and the oldest and newest data were related to 1988 and 2018, respectively. Population, data set, and ML models’ characteristics were assessed, and the performance of the model was often reported based on metrics such as accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve. Conclusions Various ML models used for different HR data indicated potential for PTB prediction. However, evaluation metrics, software and package used, data size and type, selected features, and importantly data management method often remain unjustified, threatening the reliability, performance, and internal or external validity of the model. To understand the usefulness of ML in covering the existing gap, future studies are also suggested to compare it with a conventional method on the same data set.
Background The autonomic nervous system (ANS) is known as a critical regulatory system for pregnancy-induced adaptations. If it fails to function, life-threatening pregnancy complications could occur. Hence, understanding and monitoring the underlying mechanism of action for these complications are necessary. Objective We aimed to systematically review the literature concerned with the associations between heart rate variability (HRV), as an ANS biomarker, and pregnancy complications. Methods We performed a comprehensive search in the PubMed, Medline Completion, CINAHL Completion, Web of Science Core Collection Classic, Cochrane Library, and SCOPUS databases in February 2022 with no time span limitation. We included studies concerned with the association between any pregnancy complications and HRV, with or without a control group. The PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guideline was used for the review of the studies, and Covidence software was used for the study selection process. For data synthesis, we used the guideline by Popay et al. Results Finally, 12 studies with 6656 participants were included. Despite the methodological divergency that hindered a comprehensive comparison, our findings suggest that ANS is linked with some common pregnancy complications including fetal growth. However, existing studies do not support an association between ANS and gestational diabetes mellitus. Studies that linked pulmonary and central nervous system disorders with ANS function did not provide enough evidence to draw conclusions. Conclusions This review highlights the importance of understanding and monitoring the underlying mechanism of ANS in pregnancy-induced adaptations and the need for further research with robust methodology in this area.
BACKGROUND Preterm birth (PTB) as a common pregnancy complication is responsible for 35% of the 3.1 million pregnancy-related deaths each year and significantly impacts around 15 million children annually across the world. Conventional approaches to predict PTB may neither be applicable for first-time mothers nor possess reliable predictive power. Recently, machine learning (ML) models have shown the potential as an appropriate complementary approach for PTB prediction. OBJECTIVE In this article we systematically reviewed the literature concerned with PTB prediction using ML modeling. METHODS This systematic review was conducted in accordance with the PRISMA statement. A comprehensive search was performed in seven bibliographic databases up until 15 May 2021. The quality of studies was assessed, and the descriptive information including socio-demographic characteristics, ML modeling processes, and model performance were extracted and reported. RESULTS A total of 732 papers were screened through title and abstract. Of these, 23 studies were screened by full text resulting in 13 papers that met the inclusion criteria. CONCLUSIONS We identified various ML models used for different EHR data resulting in a desirable performance for PTB prediction. However, evaluation metrics, software/package used, data size and type, and selected features, and importantly data management method often varied from study to study threatening the reliability and generalizability of the model. CLINICALTRIAL n.a.
BACKGROUND The autonomic nervous system (ANS) is known as a critical regulatory system for pregnancy-induced adaptations. If it fails to function, life-threatening pregnancy complications could occur. Hence, understanding and monitoring the underlying mechanism of action for these complications are necessary. OBJECTIVE We aimed to systematically review the literature concerned with the associations between heart rate variability (HRV), as an ANS biomarker, and pregnancy complications. METHODS We performed a comprehensive search in the PubMed, Medline Completion, CINAHL Completion, Web of Science Core Collection Classic, Cochrane Library, and SCOPUS databases in February 2022 with no time span limitation. We included studies concerned with the association between any pregnancy complications and HRV, with or without a control group. The PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guideline was used for the review of the studies, and Covidence software was used for the study selection process. For data synthesis, we used the guideline by Popay et al. RESULTS Finally, 12 studies with 6656 participants were included. Despite the methodological divergency that hindered a comprehensive comparison, our findings suggest that ANS is linked with some common pregnancy complications including fetal growth. However, existing studies do not support an association between ANS and gestational diabetes mellitus. Studies that linked pulmonary and central nervous system disorders with ANS function did not provide enough evidence to draw conclusions. CONCLUSIONS This review highlights the importance of understanding and monitoring the underlying mechanism of ANS in pregnancy-induced adaptations and the need for further research with robust methodology in this area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.