The results of this study provide a guideline for implementation of different vector control measures. Furthermore, guidelines are needed for monitoring and evaluation of insecticide susceptibility tests against sand flies.
Background: Mosquito species are highly considering as disease transmission as well as nuisance insects. One of the principal strategy to protect human from the mosquito bites is repellent agents. This study aimed to assess repellency of two organic essential oils, Eucalyptus globulus and Syzygium aromaticum from bites of malaria vector, Anopheles stephensi.
Methods: The study was conducted in 2019-2020. The components of essential oils of E. globulus and S. aromaticum was determined using gas chromatography/mass spectrometry. The unfed female mosquitoes aged 2-5 d old were used in all experiments. In vivo Klun and Debboun module bioassays were utilized on human-volunteer skin. The essential oils at serial concentrations were used to find repellent efficacy against Anopheles landings and bites. To find the synergistic effect, four combinations of the essential oils were tested.
Results: The main composition of E. globulus essential oil was 1,8-Cineol (78.20%), whereas that of S. aromaticum essential oil was 2-methoxy-3-(2-propenyl) (77.04%). Based on minimum effective dose (≤1% biting), 10% (v/v) of E. globulus showed high landing repellency (77.78%), whereas minimum effective dose of S. aromaticum at concentration of 1% had high landing repellency (88.89%). Among four combinations, the ratio of 1:1 of E. globulus (10%):S. aromaticum (1%) showed the most landing repellency (94.44%).
Conclusion: The combinations of two essential oils had the most potential repellency effect against landing of mosquitoes. As essential oils are eco-friendly with less irritation for human skin, E. globulus and S. aromaticum essential oils are recommended as effective and safe mosquito repellents.
Background
The aim of current study was to determine the protection efficacy of Eucalyptus globulus and Syzygium aromaticum essential oils nanoemulsions-loaded textiles versus bulk essential oil- treated textiles against the malaria vector, Anopheles stephensi.
Methods
The components of E. globulus and S. aromaticum essential oils were determined using gas chromatography/mass spectrometry. Then, the nanoemulsions of both essential oils were prepared using a low energy emulsification method. Their stability and droplet sizes were determined, and the repellent efficacy against landings/bites of the starve mosquito females was examined using textile panels of polyester/cotton, impregnated with serial concentrations of the nano-emulsion.
Results
The main compositions of E. globulus essential oil were 1, 8-cineol (64.58%) and alpha-pinene (10.63%), whereas those of S. aromaticum essential oil were 2-methoxy-3-(2-propenyl) (77.04%) and trans-caryophyllene (11.99%). Transparent oil in water nanoemulsion system consisting of essential oils, Tween-20, Tween-80 and propylene glycol was developed. The median droplet size was 11.2-23.1nm depending on dilution ratio. Protection time of nanoemulsion-loaded textile (285 ± 30 min) was noticeably higher than that of bulk essential oils (< 5 min).
Conclusions
It was concluded that nanoemulsion of essential oils may be interesting options in control of mosquito-related diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.