Novel leptophilic neutral currents can be tested at upcoming neutrino oscillation experiments using two complementary processes, neutrino trident production and neutrino-electron (ν − e) elastic scattering. Considering generic anomaly-free Uð1Þ extensions of the Standard Model, we discuss the characteristics of ν − e scattering as well as e þ e − and μ þ μ − trident production at the DUNE near detector in the presence of such beyond the Standard Model scenarios. We then determine the sensitivity of DUNE in constraining the well-known L e − L μ and L μ − L τ models. We conclude that DUNE will be able to probe these leptophilic models with unprecedented sensitivity, covering unproved explanations of the ðg − 2Þ μ discrepancy.
Neutrino trident scattering is a rare Standard Model process where a chargedlepton pair is produced in neutrino-nucleus scattering. To date, only the dimuon final-state has been observed, with around 100 total events, while the other channels are as yet unexplored. In this work, we compute the trident production cross section by performing a complete four-body phase space calculation for different hadronic targets. This provides a correct estimate both of the coherent and the diffractive contributions to these cross sections, but also allows us to address certain inconsistencies in the literature related to the use of the Equivalent Photon Approximation in this context. We show that this approximation can give a reasonable estimate only for the production of dimuon final-states in coherent scattering, being inadmissible for all other cases considered. We provide estimates of the number and distribution of trident events at several current and future near detector facilities subjected to intense neutrino beams from accelerators: five liquid-argon detectors (SBND, µBooNE, ICARUS, DUNE and νSTORM), the iron detector of T2K (INGRID) and three detectors made of composite material (MINOS, NOνA and MINERνA). We find that for many experiments, trident measurements are an attainable goal and a valuable addition to their near detector physics programme.
Neutrino oscillations are precision probes of new physics. Apart from neutrino masses and mixings, they are also sensitive to possible deviations of low-energy interactions between quarks and leptons from the Standard Model predictions. In this paper we develop a systematic description of such non-standard interactions (NSI) in oscillation experiments within the quantum field theory framework. We calculate the event rate and oscillation probability in the presence of general NSI, starting from the effective field theory (EFT) in which new physics modifies the flavor or Lorentz structure of charged-current interactions between leptons and quarks. We also provide the matching between the EFT Wilson coefficients and the widely used simplified quantum-mechanical approach, where new physics is encoded in a set of production and detection NSI parameters. Finally, we discuss the consistency conditions for the standard NSI approach to correctly reproduce the quantum field theory result.
We study constraints on the Standard Model Effective Field Theory (SMEFT) from neutrino oscillations in short-baseline reactor experiments. We calculate the survival probability of reactor antineutrinos at the leading order in the SMEFT expansion, that is including linear effects of dimension-6 operators. It is shown that, at this order, reactor experiments alone cannot probe charged-current contact interactions between leptons and quarks that are of the (pseudo)vector (V±A) or pseudo-scalar type. We also note that flavor-diagonal (pseudo)vector coefficients do not have observable effects in oscillation experiments. In this we reach novel or different conclusions than prior analyses of non-standard neutrino interactions. On the other hand, reactor experiments offer a unique opportunity to probe tensor and scalar SMEFT operators that are offdiagonal in the lepton-flavor space. We derive constraints on the corresponding SMEFT parameters using the most recent data from the Daya Bay and RENO experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.