Selecting the physical property capable of representing the health state of a machine is an important step in designing fault detection systems. In addition, variation of the loading condition is a challenge in deploying an industrial predictive maintenance solution. The robustness of the physical properties to variations in loading conditions is, therefore, an important consideration. In this paper, we focus specifically on squirrel cage induction motors and analyze the capabilities of three-phase current and five vibration signals acquired from different locations of the motor for the detection of Broken Rotor Bar generated in different loads. In particular, we examine the mentioned signals in relation to the performance of classifiers trained with them. Regarding the classifiers, we employ deep conventional classifiers and also propose a hybrid classifier that utilizes contrastive loss in order to mitigate the effect of different variations. The analysis shows that vibration signals are more robust under varying load conditions. Furthermore, the proposed hybrid classifier outperforms conventional classifiers and is able to achieve an accuracy of 90.96% when using current signals and 97.69% when using vibration signals.
Intelligent fault diagnosis (IFD) based on deep learning methods has shown excellent performance, however, the fact that their implementation requires massive amount of data and lack of sufficient labeled data, limits their real-world application. In this paper, we propose a two-step technique to extract fault discriminative features using unlabeled and a limited number of labeled samples for classification. To this end, we first train an Autoencoder (AE) using unlabeled samples to extract a set of potentially useful features for classification purpose and consecutively, a Contrastive Learning-based post-training is applied to make use of limited available labeled samples to improve the feature set discriminability. Our Experiments—on SEU bearing dataset—show that unsupervised feature learning using AEs improves classification performance. In addition, we demonstrate the effectiveness of the employment of contrastive learning to perform the post-training process; this strategy outperforms Cross-Entropy based post-training in limited labeled information cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.