Abstract. Dobson and Brewer spectrophotometers are the primary, standard instruments for ground-based ozone measurements under the World Meteorological Organization's (WMO) Global Atmosphere Watch program. The accuracy of the data retrieval for both instruments depends on a knowledge of the ozone absorption coefficients and some assumptions underlying the data analysis. Instrumental stray light causes nonlinearity in the response of both the Brewer and Dobson to ozone at large ozone slant paths. In addition, it affects the effective ozone absorption coefficients and extraterrestrial constants that are both instrument-dependent. This effect has not been taken into account in the calculation of ozone absorption coefficients that are currently recommended by WMO for the Dobson network. The ozone absorption coefficients are calculated for each Brewer instrument individually, but in the current procedure the effect of stray light is not considered. This study documents the error caused by the effect of stray light in the Brewer and Dobson total ozone measurements using a physical model for each instrument. For the first time, new ozone absorption coefficients are calculated for the Brewer and Dobson instruments, taking into account the stray light effect. The analyses show that the differences detected between the total ozone amounts deduced from Dobson AD and CD pair wavelengths are related to the level of stray light within the instrument. The discrepancy introduced by the assumption of a fixed height for the ozone layer for ozone measurements at high latitude sites is also evaluated. The ozone data collected by two Dobson instruments during the period of December 2008 to December 2014 are compared with ozone data from a collocated double monochromator Brewer spectrophotometer (Mark III). The results illustrate the dependence of Dobson AD and CD pair measurements on stray light.
AIM-North is a proposed satellite mission that would provide observations of unprecedented frequency and density for monitoring northern greenhouse gases (GHGs), air quality (AQ) and vegetation. AIM-North would consist of two satellites in a highly elliptical orbit formation, observing over land from $40 N to 80 N multiple times per day. Each satellite would carry a near-infrared to shortwave infrared imaging spectrometer for CO 2 , CH 4 , and CO, and an ultraviolet-visible imaging spectrometer for air quality. Both instruments would measure solar-induced fluorescence from vegetation. A cloud imager would make near-real-time observations, which could inform the pointing of the other instruments to focus only on the clearest regions. Multiple geostationary (GEO) AQ and GHG satellites are planned for the 2020s, but they will lack coverage of northern regions like the Arctic. AIM-North would address this gap with quasi-geostationary observations of the North and overlap with GEO coverage to facilitate intercomparison and fusion of these datasets. The resulting data would improve our ability to forecast northern air quality and quantify fluxes of GHG and AQ species from forests, permafrost, biomass burning and anthropogenic activity, furthering our scientific understanding of these processes and supporting environmental policy. R ESUM E AIM-North est une proposition de mission satellitaire visant a acqu erir des observations de l'h emisph ere nord a une fr equence et une densit e sans pr ec edent pour le suivi des gaz a effets de serre (GES), de la qualit e de l'air (QA) et de la v eg etation. AIM-North serait constitu ee de deux satellites plac es dans une orbite hautement elliptique permettant d'observer les surfaces situ ees entre 40 N et 80 N a plusieurs reprises au cours d'une journ ee. Chaque satellite transporterait un spectrom etre imageur op erant dans le proche infrarouge et l'infrarouge de courte longueur d'onde pour la mesure du CO 2 , CH 4 et CO, ainsi qu'un spectrom etre imageur op erant dans l'ultraviolet et le visible pour mesurer la qualit e de l'air. Ces deux instruments mesureraient aussi la fluorescence de la v eg etation induite par le soleil. La d etection des nuages en temps quasi-r eel permettrait de pointer les satellites sur les r egions ARTICLE HISTORYles moins ennuag ees. De multiples satellites g eostationnaires (GEO) pour la mesure de la QA et des GES sont pr evus pour la d ecennie 2020 mais ils ne couvriront pas les r egions les plus nordiques. AIM-North pallierait a ce manque et chevaucherait la couverture des satellites GEO, facilitant ainsi l'inter-comparaison de divers jeux de donn ees. Ces donn ees am elioreraient notre capacit e a pr evoir la QA des r egions nordiques et a quantifier les flux de GES et de QA provenant des milieux naturels et des activit es anthropiques, approfondissant notre compr ehension de ces processus et appuyant les politiques environnementales.
Abstract. It is now known that single-monochromator Brewer spectrophotometer ozone and sulfur dioxide measurements suffer from non-linearity at large ozone slant column amounts due to the presence of instrumental stray light caused by scattering within the optics of the instrument. Because of the large gradient in the ozone absorption spectrum in the near-ultraviolet, the atmospheric spectra measured by the instrument possess a very large gradient in intensity in the 300 to 325 nm wavelength region. This results in a significant sensitivity to stray light when there is more than 1000 Dobson units (DU) of ozone in the light path. As the light path (air mass) through ozone increases, the stray-light effect on the measurements also increases. The measurements can be of the order of 10 %, low for an ozone column of 600 DU and an air mass factor of 3 (1800 DU slant column amount), which is an example of conditions that produce large slant column amounts. Primary calibrations for the Brewer instrument are carried out at Mauna Loa Observatory in Hawaii and Izana Observatory in Tenerife. They are done using the Langley plot method to extrapolate a set of measurements made under a constant ozone vertical column to an extraterrestrial calibration constant. Since the effects of a small non-linearity at moderate ozone paths may still be important, a better calibration procedure should account for the non-linearity of the instrument response. Studies involving the scanning of a laser source have been used to characterize the stray-light response of the Brewer (Fioletov et al., 2000), but until recently these data have not been used to elucidate the relationship between the stray-light response and the ozone measurement non-linearity. In a study done by Karppinen et al. (2015), a method for correcting stray light has been presented that uses an additive correction, which is determined via instrument slit characterization and a radiative transfer model simulation and is then applied to the single Brewer data (Karppinen et al., 2015). The European Brewer Network is also applying stray-light corrections, which includes an iterative process that results in correcting the single Brewer data to agree with double Brewer data (Rimmer et al., 2018; Redondas et al., 2018). The first model requires measurements of the slit function and the latter method relies on a calibrated instrument, such as a double Brewer, to characterize the instrument and to determine a correction for stray light. This paper presents a simple and practical method to correct for the effects of stray light, which includes a mathematical model of the instrument response and a non-linear retrieval approach that calculates the best values for the model parameters. The model can then be used in reverse to provide more accurate ozone values up to a defined maximum ozone slant path. The parameterization used was validated using an instrument physical model simulation. This model can be applied independently to any Brewer instrument and correct for the effects of stray light.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.