Inactivation of alleles in tumor suppressor genes (TSG) is one of the important issues resulting in evolution of cancerous cells. In this paper, the evolution of healthy, one and two missed allele cells is modeled using the concept of evolutionary game theory and replicator dynamics. The proposed model also takes into account the interaction rates of the cells as designing parameters of the system. Different combinations of the equilibrium points of the parameterized nonlinear system is studied and categorized into some cases. In each case, the interaction rates' values are suggested in a way that the equilibrium points of the replicator dynamics are located on an appropriate region of the state space. Based on the suggested interaction rates, it is proved that the system doesn't have any undesirable interior equilibrium point as well. Therefore, the system will converge to the desirable region, where there is a scanty level of cancerous cells. In addition, the proposed conditions for interaction rates guarantee that, when a trajectory of the system reaches the boundaries, then it will stay there forever which is a desirable property since the equilibrium points have been already located on the boundaries, appropriately. The simulation results show the effectiveness of the suggestions in the elimination of the cancerous cells in different scenarios.
Background: Immunotherapy is a recently developed method of cancer therapy, aiming to strengthen a patient’s immune system in different ways to fight cancer. One of these ways is to add stem cells into the patient’s body. Methods: The study was conducted in Kermanshah, western Iran, 2016-2017. We first modeled the interaction between cancerous and healthy cells using the concept of evolutionary game theory. System dynamics were analyzed employing replicator equations and control theory notions. We categorized the system into separate cases based on the value of the parameters. For cases in which the system converged to undesired equilibrium points, “stem-cell injection” was employed as a therapeutic suggestion. The effect of stem cells on the model was considered by reforming the replicator equations as well as adding some new parameters to the system. Results: By adjusting stem cell-related parameters, the system converged to desired equilibrium points, i.e., points with no or a scanty level of cancerous cells. In addition to the theoretical analysis, our simulation results suggested solutions were effective in eliminating cancerous cells. Conclusion: This model could be applicable to different types of cancer, so we did not restrict it to a specific type of cancer. In fact, we were seeking a flexible mathematical framework that could cover different types of cancer by adjusting the system parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.