Green synthesis of zero-valent copper nanoparticles successfully performed using Ficus benjamina leaves. The novel adsorbent Ficus nano-zero-valent copper (FB-nZVCu) characterized by utilizing scanning electron microscopy (SEM) and Fourier transforms infrared spectroscopy (FT-IR). The size of these nanoparticles typically ranges from 16 to 18 nm. This adsorbent investigated for removal of D-blue 60 from textile wastewater. The impact of different operating parameters, including pH, adsorbent dose, stirring rate, time, and initial dye concentration, had been tested, and optimum conditions were selected to gauge the optimum dye removal performance of the adsorbent. The maximum removal efficiency of D-blue 60 reached 87% under the following proper conditions: adsorbent dose 0.3 g L−1, time 30 min, and pH 8. The Langmuir isotherm was found to be the most appropriate system for the adsorption process (R2 = 0.9994) and (qmax = 30.03 mg g−1). The pseudo-second-order model defined the adsorption. From the data obtained and the fruitful discussion, it detected that the FB-nZVCu green adsorbent strongly recommended as a hopeful substance for removing D-blue 60 from both synthetic and actual waste samples.Highlights Green synthesis of eco-friendly FB-nZVCu nanoparticles utilizing low-cost material Ficus benjamina leaves. The FB-nZVCu nanoparticles are efficient nano-adsorptive agents for removing D-blue 60 from wastewater under optimum conditions. The Langmuir isotherm and PSO kinetics model provided a good fit to the adsorption data.
The importance of this study stems from, it concentrates on new approach applying both practical and theoretical aspects to study structure of Direct orange dye 26 (DO-26) as an important dye widely used for dyeing of cotton or viscose for red orange direct printing. It also can be used for silk, wool, polyvinyl alcohol, polyamide fiber fabric and pulp dyeing. It proficiently compare practical with theoretical results of structural identification of the given important dye, via carful inspection of various phenomena detected in its two symmetrical arms around urea center. Direct orange dye 26 (DO-26) structure has been studied applying both practical spectroscopic and theoretical investigations. DFT-B3LYP/6-311++G(d,p) calculations are performed to investigate its structure, and the electronic vibrational properties. Correlation is found between experimental and calculated data. An intra-molecular hydrogen bonding interaction had been detected and characterized in dye skeleton using Atoms-in-molecule analysis employment. The hydrogen bonding present in the dye structure affecting its vibrational properties had been discussed. Natural population analysis like HOMO and LUMO and high quality molecular electrostatic potential plots along with various electronics had been presented at the same level of theory. Chemical reactivity descriptors from conceptual density functional theory point of view, structure activity relationship descriptor were obtained. The experimental UV/Visible and FT-IR spectral data of the dye DO-26 (D1) had been presented. These data had been supported by TD-DFT calculations to simulate the experimental spectra with computing the natural transition orbitals (NTO) and the orbital composition. The variation of charge transfer length (Δr) and variation in its dipole moment with respect to ground state (ΔmCT) had been computed in order to study the charge redistribution due to the excitations. Actually there is a problem that, degradation of this dye in wastewater by different techniques leads to various unknown fragments but on using theoretical possibilities it can be expected what happened in practical work.
The importance of this study stems from, it concentrates on new approach applying both practical and theoretical aspects to study structure stability of Direct orange dye 26 (DO26) as an important dye widely used for dyeing of cotton or viscose for red orange direct printing. The stable dyes are so difficult to remove, decolorized and/ or degrade, in pure solution or in wastewater samples, without using powerful removal environmental techniques electrochemical oxidations suggest and efficiently used in our Lab. Therefore, it is very important to compare between practical thermal and mass results as efficient techniques in studying dye stability, in comparison with theoretical results using Gaussian program for structural stability identification of DO26 dye, via careful inspection of various phenomena detected in its two symmetrical arms around urea center. Direct orange dye 26 (DO26) structure has been studied applying both practical spectroscopic and theoretical investigations. DFT-B3LYP/6-311++G(d,p) calculations and the electronic vibrational properties are performed to investigate its structure stability and consequently its degradation and removal from its environmental media. Correlation is found between experimental and calculated data. An intra-molecular hydrogen bonding interaction had been detected and characterized in dye skeleton. The hydrogen bonding present in the dye structure affecting its vibrational properties had been discussed. Natural population analysis like HOMO and LUMO and high quality molecular electrostatic potential plots along with various electronics had been presented at the same level of theory. Chemical reactivity descriptors from conceptual density functional theory point of view, structure activity relationship descriptor were obtained. The experimental UV/Visible, FT-IR, mass and GC-mass spectral data of the dye DO26 (D1) had been presented. These data had been supported by TD-DFT calculations to simulate the experimental spectra with computing the natural transition orbitals (NTO) and the orbital composition. The variation of charge transfer length (Δr) and variation in its dipole moment with respect to ground state (ΔmCT) had been computed in order to study the charge redistribution due to the excitations. Actually there is a problem that, degradation of this dye in wastewater by different techniques leads to various unknown fragments but on using theoretical possibilities it can be expected what happened in practical work.
The importance of this study stems from, it concentrates on new approach applying both practical and theoretical aspects to study structure stability of Direct orange dye 26 (DO26) as an important dye widely used for dyeing of cotton or viscose for red orange direct printing. The stable dyes are so di cult to remove, decolorized and/ or degrade, in pure solution or in wastewater samples, without using powerful removal environmental techniques electrochemical oxidations suggest and e ciently used in our Lab. Therefore, it is very important to compare between practical thermal and mass results as e cient techniques in studying dye stability, in comparison with theoretical results using Gaussian program for structural stability identi cation of DO26 dye, via careful inspection of various phenomena detected in its two symmetrical arms around urea center. Direct orange dye 26 (DO26) structure has been studied applying both practical spectroscopic and theoretical investigations. DFT-B3LYP/6-311++G(d,p) calculations and the electronic vibrational properties are performed to investigate its structure stability and consequently its degradation and removal from its environmental media. Correlation is found between experimental and calculated data. An intra-molecular hydrogen bonding interaction had been detected and characterized in dye skeleton. The hydrogen bonding present in the dye structure affecting its vibrational properties had been discussed. Natural population analysis like HOMO and LUMO and high quality molecular electrostatic potential plots along with various electronics had been presented at the same level of theory. Chemical reactivity descriptors from conceptual density functional theory point of view, structure activity relationship descriptor were obtained. The experimental UV/Visible, FT-IR, mass and GC-mass spectral data of the dye DO26 (D1) had been presented. These data had been supported by TD-DFT calculations to simulate the experimental spectra with computing the natural transition orbitals (NTO) and the orbital composition. The variation of charge transfer length (Δr) and variation in its dipole moment with respect to ground state (Δm CT ) had been computed in order to study the charge redistribution due to the excitations. Actually there is a problem that, degradation of this dye in wastewater by different techniques leads to various unknown fragments but on using theoretical possibilities it can be expected what happened in practical work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.