Estimations of average crash density as a function of traffic elements and characteristics can be used for making good decisions relating to planning, designing, operating, and maintaining roadway networks. This study describes the relationships between total, collision, turnover, and runover accident densities with factors such as hourly traffic flow and average spot speed on multilane rural highways in Iraq. The study is based on data collected from two sources: police stations and traffic surveys. Three highways are selected in Wassit governorate as a case study to cover the studied locations of the accidents. Three highways are selected in Wassit governorate as a case study to cover the studied locations of the accidents. The selection includes Kut–Suwera, Kut–ShekhSaad, and Kut–Hay multilane divided highways located in the south of Iraq. The preliminary presentation of the studied highways was performed using Geographic Information System (GIS) software. Data collection was done to obtain crash numbers and types over five years with their locations, hourly traffic flow, and average spot speed and define roadway segments lengths of crash locations. The cumulative speed distribution curves introduce that the spot speed spectrum for each highway's whole traffic extends over a relatively wide range, indicating a maximum speed of 180 kph and a minimum speed of 30 kph. Multiple linear regression analysis is applied to the data using SPSS software to attain the relationships between the dependent variables and the independent variables to identify elements strongly correlated with crash densities. Four regression models are developed which verify good and strong statistical relationships between crash densities with the studied factors. The results show that traffic volume and driving speed have a significant impact on the crash densities. It means that there is a positive correlation between the single factors and crash occurrence. The higher volumes and the faster the driving speed, the more likely it is to crash. As the hourly traffic flow of automobile grows, the need for safe traffic facilities also extended. Doi: 10.28991/cej-2021-03091719 Full Text: PDF
This study describes traffic crash rates in selected multilane rural highways in Wasit governorate in Iraq. The main objective of this research is to investigate relationships between total, fatal crash rates and their kinds and factors such as hourly traffic flow and average spot speed. The study is based on data collected from two sources: police stations and traffic surveys. Three highways are selected to cover the locations of the accidents. The selection includes Kut – Suwera with five segments, Kut – ShekhSaad with three segments, and Kut – Hay with two segments multilane divided highways. Multiple linear regression analysis is applied to the data by using SPSS software to attain the relationships between the dependent variables and the independent variables in order to identify elements that are strongly correlated with crashes rates and severity. Seven regression models are developed which verify weak and strong statistical relationships between crashes types and average spot speed with hourly traffic flow respectively. As the hourly traffic flow of automobile grows, the need for safe traffic facilities also grown.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.