Educational Data Mining plays a crucial role in identifying academically weak students of an institute and helps to develop different recommendation system for them. Students from three colleges of Assam, India were considered in our research which their records were run on deep learning using sequential neural model and adam optimization method. The paper compared other classification methods such as Artificial Immune Recognition System v2.0 and Adaboost, to find out the prediction of the results of the students. The highest classification rate was 95.34% produced by the deep learning techniques. The Precision, Recall, F-Score, Accuracy, and Kappa Statistics Performance were calculated as a statistics decisions to find the best classification methods. The dataset used in this paper was 10140 student records. Directing the student for their future plan comes from discovering the hidden patterns by using Data Mining techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.