This paper introduces an effective method of fingerprint classification based on discriminative feature gathering from orientation field. A nonlinear support vector machines (SVMs) is adopted for the classification. The orientation field is estimated through a pixel-Wise gradient descent method and the percentage of directional block classes is estimated. These percentages are classified into four-dimensional vector considered as a good feature that can be combined with an accurate singular point to classify the fingerprint into one of five classes. This method shows high classification accuracy relative to other spatial domain classifiers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.