The present study provides and examines an experimental and CFD simulation to predict and accurately quantify the individual phase holdup. The experimental findings demonstrated that the increase of solid beads has a significant influence on the (Umf), as comparatively small glass beads particles require a low (Umf) value, which tends to increase as the diameter of the beads increases. Besides that, the expansion ratio is proportional to the velocity of the liquid. Even though, the relationship becomes inversely proportional to the diameter of the beads. The liquid holdup was found to increase with increasing liquid velocity, however, the solid holdup decreased. The Eulerian–Eulerian granular multiphase flow technique was used to predict the overall performance of the liquid–solid fluidized beds (LSFBs). There was a good agreement between the experimental results and the dynamic properties of liquid–solid flows obtained from the CFD simulation, which will facilitate future simulation studies of liquid–solid fluidized beds. This work has further improved the understanding and knowledge of CFD simulation of such a system at different parameters. Furthermore, understanding the hydrodynamics features within the two-phase fluidization bed, as well as knowing the specific features, is essential for good system design, enabling the systems to perform more effectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.