Bacteria are rich in a wide variety of secondary metabolites, such as pigments, alkaloids, antibiotics, and others. These bioactive microbial products serve a great application in human and animal health. Their molecular diversity allows these natural products to possess several therapeutic attributes and biological functions. That’s why the current natural drug industry focuses on uncovering all the possible ailments and diseases that could be combated by bacterial extracts and their secondary metabolites. In this paper, we review the major utilizations of bacterial natural products for the treatment of cancer, inflammatory diseases, allergies, autoimmune diseases, infections and other diseases that threaten public health. We also elaborate on the identified biological activities of bacterial secondary metabolites including antibacterial, antifungal, antiviral and antioxidant activities all of which are essential nowadays with the emergence of drug-resistant microbial pathogens. Throughout this review, we discuss the possible mechanisms of actions in which bacterial-derived biologically active molecular entities could possess healing properties to inspire the development of new therapeutic agents in academia and industry.
A new vertical transistor structure based on GaN nanowire is designed and optimized using the TCAD-Santaurus tool with an electrothermal model. The studied structure with quasi-1D drift region is adapted to GaN nanowires synthesized with the bottom-up approach on a highly n-doped silicon substrate. The electrical performance is studied as a function of various epi-structure parameters, including region lengths and doping levels, nanowire diameter, and the impact of the surface states. The results reveal that the optimized structure has a Normally-OFF mode with a threshold voltage higher than 0.8 V and exhibits minimized leakage current, low on-state resistance, and maximized breakdown voltage. To the best of our knowledge, this is the first exhaustive study of GaN-based nanowire transistors, providing valuable insights for the scientific community and contributing to a deeper understanding of the impact of GaN nanowire parameters on device performance.
<span>Network reliability is valuable in establishing a survivable communication network. Reliability evaluation algorithms are used in the design stage and during the network deployment. This work presents a new multistage hybrid technique for two-terminal reliability evaluation problem. It is based on a combination of graph reduction techniques and tie-set method. A new approach has been introduced for deducing tie-sets in a network containing both unidirectional and bi-directional edges. The proposed algorithm can be applied for both simple and complex networks without restrictions. The results confirm that new algorithm evaluates network's reliability with decreasing computing time compared to classical algorithms. The results for a case study of a 20-node network have demonstrated that the required time for reliability evaluation is decreased from (t>1 hour) in the case of using a classical algorithm, to (t<1 second) for the new algorithm.</span>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.