This paper investigates the performance of Fe-33Ni-18Cr alloy at high temperature oxidation. The samples were isothermally oxidized at three different oxidation temperatures, namely, 600 °C, 800 °C and 1000 °C for 150 hours. This alloy was ground by using several grits of SiC paper as well as weighed by using analytical balance and measured by using Vernier caliper before oxidation test. The characterization was carried out using scanning electron microscope (SEM) equipped with energy dispersive x-ray (EDX) and x-ray diffraction (XRD). The results show that, the higher oxidation temperatures, the weight gain of the samples were increase. Sample of 1000 °C indicate more weight gain compared to samples oxidized at 600 °C and 800 °C. The kinetic of oxidation of all samples followed the parabolic rate law. The surface morphology of oxide scale at lower temperature is thin and form a continuous layer, while at high temperature, the oxide scale develops thick layer with angular oxide particles.
This research investigates the effect of heat treatment on the isothermal oxidation behaviour of Fe-33Ni-19Cr alloy. The samples were undergone heat treatment at three different temperatures namely, 1000oC, 1100oC and 1200oC for 120 minutes of soaking time followed by water quench to differ the grain size of alloy. The heat-treated sample was ground by using SiC paper atP600 finished. The samples were weighed using analytical balance and the surface area was measured before oxidation test. The heat-treated Fe-33Ni-19Cr alloys were isothermally oxidized at 850oC for 150 hours. The characterization on oxidized samples were carried out using scanning electron microscope equipped with energy dispersive x-ray (SEM-EDX) and x-ray diffraction (XRD). The result shows that, the average grain size increases as the heat treatment temperature increased. Fine grain size develops higher grain boundary area which acts as an ion diffusion path across the metal-gas interface during oxide formation. HT1000 sample with fine grain structure shows minimum weight gain and low oxidation rate compared to HT1100 and HT1200 samples. Uniform oxide layerformed on surface of the fine grain size sample. Whereas spallation of oxide scales was identified on the coarse grain size sample. Phase analysis shows that the oxidized sample formed several oxide phase.
This research study was focused on the effect of heat treatment on the isothermal oxidation of Fe-33Ni-18Cr alloy at 1000 °C. The Fe-33Ni-18Cr alloy was undergone heat treatment at three different temperatures, namely 1000 °C, 1100 °C and 1200 °C for 3 hours soaking time followed by water quench to vary the grain size of the alloy. The heat-treated alloys was prepared for further isothermal oxidation test. The heat-treated alloys was ground by using several grit of silicon carbide papers as well as weighed by using analytical balance and measured by using Vernier caliper before the oxidation test. The heat-treated Fe-33Ni-18Cr alloys was isothermally oxidized at 1000 °C for 150 hours exposure time. The characterization of the oxidized samples was carried out using optical microscope and scanning electron microscope (SEM). The heat treatment result shows that, increasing the heat treatment temperature was increased the average grain size of the alloy. The kinetics of oxidation was followed the parabolic rate law which represent the diffusion-controlled oxide growth rate. Fine grain structure of 1000i-1000 sample shows minimum weight gain and lower oxidation rate compared to samples of 1000i-1100 and 1000i-1200. On the other hand, 1000i-1100 and 1000i-1200 samples indicate the formation of oxide spallation and crack propagation on the oxidized surface, respectively.
This research study describes the influence of different heat treatment temperature on isothermal oxidation of Fe-33Ni-18Cr alloy. The Fe-33Ni-18Cr alloy was undergone heat treatment at three different temperatures, namely 1000 °C, 1100 °C and 1200 °C for 3h soaking time followed by water quench to vary the grain size of the alloy. This alloy was ground by using several grit of silicon carbide papers as well as weighed by using analytical balance and measured by using Vernier caliper before oxidation test. The heat-treated Fe-33Ni-18Cr alloy was isothermally oxidized at 800 °C for 150h. The characterization of oxidized samples was carried out using optical microscope, scanning electron microscope equipped with energy dispersive x-ray (SEM-EDX) and x-ray diffraction (XRD). The results showed that, increasing the heat treatment temperature was increased the average grain size. The kinetics of oxidation followed the parabolic rate law which represents diffusion-controlled oxide growth rate. Fine grain structure of 1000 °C sample shows minimum weight gain and lower oxidation rate compared to samples of 1100 °C and 1200 °C that indicated oxide spallation and porous structure. Besides, phase analysis showed that the oxidized sample formed several oxide phases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.