Cryptography is fundamental to the provision of a wider notion of information security. Electronic information can easily be transmitted and stored in relatively insecure environments. This research was present to factor the prime power modulus \(N = p^r q\) for \(r \geq 2\) using the RSA key equation, if \(\frac{y}{x}\) is a convergents of the continued fractions expansions of \(\frac{e}{N - \left(2^{\frac{2r+1}{r+1}} N^{\frac{r}{r+1}} - 2^{\frac{r-1}{r+1}} N^{\frac{r-1}{r+1}}\right)}\). We furthered our analysis on \(n\) prime power moduli \(N_i = p_i^r q_i\) by transforming the generalized key equations into Simultaneous Diophantine approximations and using the LLL algorithm on \(n\) prime power public keys \((N_i,e_i)\) we were able to factorize the \(n\) prime power moduli \(N_i = p_i^r q_i\), for \(i = 1,....,n\) simultaneously in polynomial time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.