A coupled hygro-thermo-mechanical computational model is proposed for fibre reinforced polymers, formulated within the framework of Computational Homogenisation (CH). At each macrostructure Gauss point, constitutive matrices for thermal, moisture transport and mechanical responses are calculated from CH of the underlying representative volume element (RVE). A degradation model, developed from experimental data relating evolution of mechanical properties over time for a given exposure temperature and moisture concentration is also developed and incorporated in the proposed computational model. A unified approach is used to impose the RVE boundary conditions, which allows convenient switching between linear Dirichlet, uniform Neumann and periodic boundary conditions. A plain weave textile composite RVE consisting of yarns embedded in a matrix is considered in this case. Matrix and yarns are considered as isotropic and transversely isotropic materials respectively. Furthermore, the computational framework utilises hierarchic basis functions and designed to take advantage of distributed memory high performance computing.
'An adaptive nite element/meshless coupled method based on local maximum entropy shape functions for linear and nonlinear problems.', Computer methods in applied mechanics and engineering., 267 . pp. 111-132. Further information on publisher's website:http://dx.doi.org/10.1016/j.cma.2013.07.018Publisher's copyright statement: NOTICE: this is the author's version of a work that was accepted for publication in Computer Methods in Applied Mechanics and Engineering. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be re ected in this document. Changes may have been made to this work since it was submitted for publication. A de nitive version was subsequently published in Computer Methods in Applied Mechanics and Engineering, 267, 2013, 10.1016/j.cma.2013.07.018. Additional information:Use policyThe full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-pro t purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details. AbstractIn this paper, an automatic adaptive coupling procedure is proposed for the finite element method (FEM) and the element-free Galerkin method (EFGM) for linear elasticity and for problems with both material and geometrical nonlinearities. In this new procedure, initially the whole of the problem domain is modelled using the FEM. During an analysis, those finite elements which violate a predefined error measure are automatically converted to an EFG zone. This EFG zone can be further refined by adding nodes, thus avoiding computationally expensive FE remeshing. Local maximum entropy shape functions are used in the EFG zone of the problem domain for two reasons: their weak Kronecker delta property at the boundaries allows straightforward imposition of essential boundary conditions and also provides a natural way to couple the EFG and FE regions compared to the use of moving least squares basis functions. The Zienkiewicz & Zhu error estimation procedure with the superconvergent patch method for strains and stresses recovery is used in the FE region of the problem domain, while the Chung & Belytschko error estimation procedure is used in the EFG region.
A three-dimensional multi-scale computational homogenisation framework is developed for the prediction of nonlinear micro/meso-mechanical response of the fibre-reinforced polymer (FRP) composites. Two dominant damage mechanisms, i.e. matrix elasto-plastic response and fibre-matrix decohesion are considered and modelled using a non-associative pressure dependent paraboloidal yield criterion and cohesive interface elements respectively. A linear-elastic transversely isotropic material model is used to model yarns/fibres within the representative volume element (RVE). A unified approach is used to impose the RVE boundary conditions, which allows convenient switching between linear displacement, uniform traction and periodic boundary conditions. The computational model is implemented within the framework of the hierarchic finite element, which permits the use of arbitrary orders of approximation. Furthermore, the computational framework is designed to take advantage of distributed memory high-performance computing. The accuracy and performance of the computational framework are demonstrated with a variety of numerical examples, including unidirectional FRP composite, a composite comprising a multi-fibre and multi-layer RVE, with randomly generated fibres, and a single layered plain weave textile composite. Results are validated against the reference experimental/numerical results from the literature. The computational framework is also used to study the effect of matrix and fibre-matrix interfaces properties on the
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.