Abstract-The achievement of good honours in Undergraduate degrees is important in the context of Higher Education (HE), both for students and for the institutions that host them. In this paper, we look at whether data mining can be used to highlight performance problems early on and propose remedial actions. Furthermore, some of the methods may also form the basis for recommender systems that may guide students towards their module choices to increase their chances of a good outcome. We use data collected through the admission process and through the students' degrees. In this paper, we predict good honours outcomes based on data at admission and on the first year module results. To validate the proposed results, we evaluate data relating to students with different characteristics from different schools. The analysis is achieved by using historical data from the Data Warehouse of a specific University. The methods used, however, are fairly general and can be used in any HE institution. Our results highlight groups of students at considerable risk of obtaining poor outcomes. For example, using admissions and first year module performance data we can isolate groups for one of the studied schools in which only 24% of students achieve good honour degrees. Over 67% of all low achievers in the school can be identified within this group.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.