K(+) channels determine the plasma membrane potential of vascular myocytes, influencing arterial tone. In many types of arteries, a moderate increase in [K(+)]e induces vasorelaxation by augmenting the inwardly rectifying K(+) channel current (I Kir). K(+)-vasodilation matches regional tissue activity and O2 supply. In chronic hypertension (HT), small arteries and arterioles undergo various changes; however, ion channel remodeling is poorly understood. Here, we investigated whether K(+) channels and K(+)-induced vasodilation are affected in deep femoral (DFA) and cerebral artery (CA) myocytes of angiotensin II-induced hypertensive rats (Ang-HT). Additionally, we tested whether regular exercise training (ET) restores HT-associated changes in K(+) channel activity. In Ang-HT, both the voltage-gated K(+) channel current (I Kv) and I Kir were decreased in DFA and CA myocytes, and were effectively restored and further increased by combined ET for 2 weeks (HT-ET). Consistently, K(+)-vasodilation of the DFA was impaired in Ang-HT, and recovered in HT-ET. Interestingly, ET did not reverse the decreased K(+)-vasodilation of CA. CA myocytes from the Ang-HT and HT-ET groups demonstrated, apart from K(+) channel changes, an increase in nonselective cationic current (I NSC). In contrast, DFA myocytes exhibited decreased I NSC in both the Ang-HT and HT-ET groups. Taken together, the decreased K(+) conductance in Ang-HT rats and its recovery by ET suggest increased peripheral arterial resistance in HT and the anti-hypertensive effects of ET, respectively. In addition, the common upregulation of I NSC in the CA in the Ang-HT and HT-ET groups might imply a protective adaptation preventing excessive cerebral blood flow under HT and strenuous exercise.
Heart failure and cardiac arrhythmias are the leading causes of mortality and morbidity worldwide. However, the mechanism of pathogenesis and myocardial malfunction in the diseased heart remains to be fully clarified. Recent compelling evidence demonstrates that changes in the myofilament Ca(2+) sensitivity affect intracellular Ca(2+) homeostasis and ion channel activities in cardiac myocytes, the essential mechanisms responsible for the cardiac action potential and contraction in healthy and diseased hearts. Indeed, activities of ion channels and transporters underlying cardiac action potentials (e.g., Na(+), Ca(2+) and K(+) channels and the Na(+)-Ca(2+) exchanger) and intracellular Ca(2+) handling proteins (e.g., ryanodine receptors and Ca(2+)-ATPase in sarcoplasmic reticulum (SERCA2a) or phospholamban and its phosphorylation) are conventionally measured to evaluate the fundamental mechanisms of cardiac excitation-contraction (E-C) coupling. Both electrical activities in the membrane and intracellular Ca(2+) changes are the trigger signals of E-C coupling, whereas myofilament is the functional unit of contraction and relaxation, and myofilament Ca(2+) sensitivity is imperative in the implementation of myofibril performance. Nevertheless, few studies incorporate myofilament Ca(2+) sensitivity into the functional analysis of the myocardium unless it is the focus of the study. Here, we describe a protocol that measures sarcomere shortening/re-lengthening and the intracellular Ca(2+) level using Fura-2 AM (ratiometric detection) and evaluate the changes of myofilament Ca(2+) sensitivity in cardiac myocytes from rat hearts. The main aim is to emphasize that myofilament Ca(2+) sensitivity should be taken into consideration in E-C coupling for mechanistic analysis. Comprehensive investigation of ion channels, ion transporters, intracellular Ca(2+) handling, and myofilament Ca(2+) sensitivity that underlie myocyte contractility in healthy and diseased hearts will provide valuable information for designing more effective strategies of translational and therapeutic value.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.