In this paper, we address the problem of energy consumption associated with mixed signal components such as analog-to-digital components in millimeter-wave (mmWave) massive MIMO systems. We employ non-orthogonal multiple access (NOMA) in millimeter-wave (mmWave) massive MIMO systems to further enhance the spectrum efficiency. The simultaneous wireless information and power transmission technology (SWIPT) will be used in mmWave massive Multiple-Input multiple-Output MIMO systems. The utilization of SWIPT contributes to prolonging the battery life of mobile users (MUs) and enhances the system energy efficiency (EE), especially in the NOMA scenario where the inter-user interference can be reused for energy harvesting (EH). However, we initially designed a user grouping algorithm based on the affinity propagation clustering algorithm, which preferentially groups the user equipment (UE) based on their channel correlation and distance. Then, we design the analog RF precoder based on the selected user grouping for all beams, followed by a low-dimensional digital baseband precoder design to further mitigate inter-beam interference and maximize the achievable sum-rate for the considered system. Subsequently, we transform the original optimization problem into a joint power allocation and power-splitting maximization problem. The considered non-convex optimization problem is arduous to tackle, resulting from the presence of coupled variables and inter-user interference. To cope with this problem, a decoupled approach is adopted, in which the power allocation and power splitting are separated, and the corresponding sub-problems are solved using the Lagrangian duality method. Simulation results confirm the effectiveness of the proposed method and demonstrate that the proposed method is near-optimal and enjoys higher spectrum and energy efficiency compared with state-of-the-art designs and the conventional SWIPT-enabled mmWave MIMO-NOMA system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.