Today, the entire world is witnessing an enormous upsurge in coronavirus pandemic (COVID-19 pandemic). Confronting such acute infectious disease, which has taken multiple victims around the world, requires all specialists in all fields to devote their efforts to seek effective treatment or even control its disseminate. In the light of this aspect, this work proposes two new fractional-order versions for one of the recently extended forms of the SEIR model. These two versions, which are established in view of two fractional-order differential operators, namely, the Caputo and the Caputo–Fabrizio operators, are numerically solved based on the Generalized Euler Method (GEM) that considers Caputo sense, and the Adams–Bashforth Method (ABM) that considers Caputo–Fabrizio sense. Several numerical results reveal the impact of the fractional-order values on the two established disease models, and the continuation of the COVID-19 pandemic outbreak to this moment. In the meantime, some novel results related to the stability analysis and the basic reproductive number are addressed for the proposed fractional-order Caputo COVID-19 model. For declining the total of individuals infected by such pandemic, a new compartment is added to the proposed model, namely the disease prevention compartment that includes the use of face masks, gloves and sterilizers. In view of such modification, it is turned out that the performed addition to the fractional-order Caputo COVID-19 model yields a significant improvement in reducing the risk of COVID-19 spreading.
<abstract><p>In this paper, we establish a novel fractional numerical modification of the 5-point classical central formula; called the modified 5-point fractional formula for approximating the first fractional-order derivative in the sense of the Caputo operator. Accordingly, we then introduce a new methodology for Richardson extrapolation depending on the fractional central formula in order to obtain a high accuracy for the gained approximations. We compare the efficiency of the proposed methods by using tables and figures to show their reliability.</p></abstract>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.