An engine mounting system is the primary vibration isolator of the engine from the chassis. The frequency-dependent stiffness and loss factor present a more accurate representation of a rubber mount as opposed to the frequencyindependent damping model. In this article, dynamic optimization of an engine mounting system considering the frequency-dependent stiffness and loss factor is presented. The dynamic properties in all three principal directions are measured on the basis of the optimum locations and orientation angles of the individual engine mounts, which are identified to minimize the mean force transmissibility of the system for a range of frequencies, resulting in a 45% reduction in the vertical transmissibility to the installation base. In comparison, optimization based on a frequencyindependent stiffness underestimated the peak transmissibility, and minimization of the vertical force transmissibility created a significant increase in other directions. The optimum parameters are applied to a small utility two-stroke engine. A significant reduction in the transmitted force and engine displacement is demonstrated.
Despite the advancement of the tremor assessment systems, the current technology still lacks a method that can objectively characterize tremors in relative segmental movements. This paper presents a measurement system, which quantifies multi-degrees-of-freedom coupled relative motions of hand-arm tremor, in terms of joint angular displacement. In-laboratory validity and reliability tests of the system algorithm to provide joint angular displacement was carried out by using the two-degrees-of-freedom tremor simulator with incremental rotary encoder systems installed. The statistical analyses show that the developed system has high validity results and comparable reliability performances using the rotary encoder system as the reference. In the clinical trials, the system was tested on 38 Parkinson's disease patients. The system readings were correlated with the observational tremor ratings of six trained medical doctors. The moderate to very high clinical correlations of the system readings in measuring rest, postural and task-specific tremors add merits to the degree of readiness of the developed tremor measurement system in a routine clinical setting and/or intervention trial for tremor amelioration.
The characteristics of the Parkinson’s disease tremor reported previously are not applicable to the full spectrum of severity. The characteristics of high- and low-amplitude tremors differ in signal regularity and frequency dispersion, a phenomenon that indicates characterisation should be studied separately based on the severity. The subclinical tremor of Parkinson’s disease is close to physiological tremor in terms of amplitude and frequency, and their distinctive features are still undetermined. We aimed to determine joint motion characteristics that are unique to subclinical Parkinson’s disease tremors. The tremors were characterised by four hand–arm motions based on displacement and peak frequencies. The rest and postural tremors of 63 patients with Parkinson’s disease and 62 normal subjects were measured with inertial sensors. The baseline was established from normal tremors, and the joint motions were compared within and between the two subject groups. Displacement analysis showed that pronation–supination and wrist abduction–adduction are the most and least predominant tremor motions for both Parkinson’s disease and normal tremors, respectively. However, the subclinical Parkinson’s disease tremor has significant greater amplitude and peak frequency in specific predominant motions compared with the normal tremor. The flexion–extension of normal postural tremor increases in frequency from the proximal to distal segment, a phenomenon that is explainable by mechanical oscillation. This characteristic is also observed in patients with Parkinson’s disease but with amplification in wrist and elbow joints. The contributed distinctive characteristics of subclinical tremors provide clues on the physiological manifestation that is a result of the neuromuscular mechanism of Parkinson’s disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.