The Internet of Things (IoT) is getting important and interconnected technologies of the world, consisting of sensor devices. The internet is smoothly changing from an internet of people towards an Internet of Things, which permits various objects to connect to another wirelessly. The energy consumption of the IoT routing protocol can affect the network life span. In addition, the high volume of data produced by IoT will result in transmission collision, security issues, and energy dissipation due to increased data redundancy because tiny sensors are usually hard to recharge after they are deployed. Generally, to save energy, data aggregation reduces data redundancy at each node by turning some nodes into sleep mode and others into wake mode. Therefore, it is important to group the nodes with high data similarity using the fuzzy matrix. Then, the data received from the member nodes at the Cluster Head (CH) are analyzed using a fuzzy similarity matrix for clustering. In the next step, after clustering, some nodes are chosen from all groups as redundant nodes. The sleep scheduling mechanism is then applied to reduce data redundancy, network traffic jamming, and transmission costs. We have proposed an Energy-Efficient Data Aggregation Mechanism (EEDAM) secured by blockchain, which uses a data aggregation mechanism at the cluster level to save energy. As edge computing is used to provide on-demand trusted services to IoT with minimum delay, blockchain is integrated inside a cloud server, so the edge is validated by the blockchain to provide secure services to IoT. Finally, we performed simulations to calculate the performance of the proposed mechanism and compared it with the conventional energy-efficient algorithms. The simulation results show that the proposed structural design can successfully reduce the amount of data, provide proper security to the IoT, and extend the wireless sensor network (WSN).
The Internet of Health Thing (IoHT) has various applications in healthcare. Modern IoHTintegrates health-related things like sensors and remotely observed medical devices for the assessment and managment of a patient's record to provide smarter and efficient health diagnostics to the patient. In this paper, we proposed an IoT with a cloud-based clinical decision support system for prediction and observation of disease with its severity level with the integration of 5G services and block-chain technologies. A block-chain is a system for storing and sharing information that is secure because of its transparency. Block-chain has many applications in healthcare and can improve mobile health applications, monitoring devices, sharing and storing of the electronic media records, clinical trial data, and insurance information storage. The proposed framework will collect the data of patients through medical devices that will be attached to the patient, and these data will be stored in a cloud server with relevant medical records. Deployment of Block-chain and 5G technology allows for sending patient data securely at a fast transmission rate with efficient response time. Furthermore, a Neural Network (NN) classifier is used for the prediction of diseases and their severity level. The proposed model is validated by employing different classifiers. The performance of different classifiers is measured by comparing the values to select the classifier that is the best for the dataset. The NN classifier attains an accuracy of 98.98. Furthermore, the NN is trained for the dataset so that it can predict the result of the dataset class that is not labeled. The trained Neural Network predicts and intelligently shows the results with more accuracy than other classifiers.
Diabetes mellitus is a hyperglycemia-like chronic condition that is a troublesome disease. It is estimated that, according to the growing morbidity, by 2040, the world will cross 642 million diabetic patients. This means that each one of the ten adults will be diabetes-affected. Diabetes can also lead to other illnesses such as heart attacks, kidney damage, and even blindness. The prediction of diabetes in advance motivates us to develop a machine learning-based model. A dataset was obtained from the online repository for this work. The obtained dataset was imbalanced. An imbalanced dataset presents a challenge that is needed to be balanced for prediction using multiple machine learning like Tomek and SMOTE. These techniques remove necessary outliers that are incomplete in the provided dataset. These outliers are also managed using the IQR method. Additionally, this research employed a two-stage model selection methodology. In the first stage, logistic regression, Support Vector Machine, k-nearest neighbors, gradient boost, Naive Bayes, and Random Forests were applied to determine the efficiency of prediction based on patients’ preconditioning. At this stage, Random Forest was found to be the best with an accuracy of 80.7% after applying SMOTE oversampling technique to balance the dataset. In the second stage, three better-performing models were used by utilizing a voting algorithm. The results were encouraging, and the model obtained 82.0% accuracy with the default dataset and 81.7% accuracy with the balanced dataset. Naive Bayes Theorem, Gradient Boosting Classifier, and Random Forest were used as inputs to the voting algorithm.
Abstract-Scrum does not provide any direction about how to engineer a software product. The project team has to adopt suitable agile process model for the engineering of software. XP process model is mainly focused on engineering practices rather than management practices. The design of XP process makes it suitable for simple and small size projects and not appropriate for medium and large projects. A fine integration of management and engineering practices is desperately required to build quality product to make it valuable for customers. In this research a novel framework hybrid model is proposed to achieve this integration. The proposed hybrid model is actually an express version of Scrum model. It possesses features of engineering practices that are necessary to develop quality software as per customer requirements and company objectives. A case study is conducted to validate the proposal of hybrid model. The results of the case study reveal that proposed model is an improved version of XP and Scrum model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.