Frank-Kasper (F-K) and quasicrystal phases were originally identified in metal alloys and only sporadically reported in soft materials. These unconventional sphere-packing schemes open up possibilities to design materials with different properties. The challenge in soft materials is how to correlate complex phases built from spheres with the tunable parameters of chemical composition and molecular architecture. Here, we report a complete sequence of various highly ordered mesophases by the self-assembly of specifically designed and synthesized giant surfactants, which are conjugates of hydrophilic polyhedral oligomeric silsesquioxane cages tethered with hydrophobic polystyrene tails. We show that the occurrence of these mesophases results from nanophase separation between the heads and tails and thus is critically dependent on molecular geometry. Variations in molecular geometry achieved by changing the number of tails from one to four not only shift compositional phase boundaries but also stabilize F-K and quasicrystal phases in regions where simple phases of spheroidal micelles are typically observed. These complex self-assembled nanostructures have been identified by combining X-ray scattering techniques and real-space electron microscopy images. Brownian dynamics simulations based on a simplified molecular model confirm the architecture-induced sequence of phases. Our results demonstrate the critical role of molecular architecture in dictating the formation of supramolecular crystals with "soft" spheroidal motifs and provide guidelines to the design of unconventional self-assembled nanostructures.self-assembly | Frank-Kasper phases | quasicrystal phases | giant surfactants | POSS I n addition to the close-packing schemes of identical atoms (such as hexagonal close-packing and face-centered cubic), atoms with different radii and electronic states in metal alloys are able to pack into more complex phases composed of spheres, such as the Frank-Kasper (F-K) phases (1, 2), which combine the Frank lattice (icosahedron with a coordination number of 12) and the Kasper lattice (with higher coordination numbers of 14, 15, and 16). A few F-K phases such as the A15-(space group of Pm 3n) and σ-(space group of P4 2 /mnm) phases are periodic approximants of different quasicrystals. Quasicrystals, first identified in supercooled metal alloys, are aperiodic, and possess 5-, 7-, 8-, 10-, or 12-fold rotational symmetry but no long-range translational periodicity (3-5). Stabilization of these phases in metals originates from both geometric factors and the tendency to enhance low orbital electron sharing due to fewer surface contacts among the atoms (6).F-K phases have also been identified in soft-matter systems, including small-molecule surfactants (7-9), block copolymers (10-12), dendrimers (13-15), liquid crystals (16, 17), colloidal particles (18), and, very recently, molecular giant tetrahedra (19). In contrast to metal alloys that use atoms as the motifs, organic/hybrid molecules first self-assemble into spheroidal motifs...
Inspiration for molecular design and construction can be derived from mathematically based structures. In the quest for new materials, the adaptation of new building blocks can lead to unexpected results. Towards these ends, the quantitative single-step self-assembly of a shape-persistent, Archimedean-based building block, which generates the largest molecular sphere (a cuboctahedron) that has been unequivocally characterized by synchrotron X-ray analysis, is described. The unique properties of this new construct give rise to a dilution-based transformation into two identical spheres (octahedra) each possessing one half of the molecular weight of the parent structure; concentration of this octahedron reconstitutes the original cuboctahedron. These chemical phenomena are reminiscent of biological fission and fusion processes. The large 6 nm cage structure was further analyzed by 1D and 2D NMR spectroscopy, mass spectrometry, and collision cross-section analysis. New routes to molecular encapsulation can be envisioned.
Metallomacromolecular architectural conversion is expanded by the characterization of three different structures. A quantitative, single-step, self-assembly of a shape-persistent monomer, containing a flexible crown ether moiety, gives an initial Archimedean-based cuboctahedron that has been unequivocally characterized by 1D and 2D NMR spectroscopy, mass spectrometry, and collision cross section analysis. Both dilution and exchange of counterions, transforms this cuboctahedron into two identical octahedrons, which upon further dilution convert into four, superposed, bistrianglar complexes; increasing the concentration reverses the process. Ion binding studies using the cuboctahedral cage were undertaken.
Top-down multidimensional mass spectrometry, interfacing electrospray ionization (ESI) with ion mobility mass spectrometry (IM-MS), and energy resolved (gradient) tandem mass spectrometry (gMS(2) ) are employed to characterize the stoichiometries, architectures, and intrinsic stabilities of coordinatively bound supramolecular polymers containing terpyridine functionalized ligands. As a soft ionization method, ESI prevents or minimizes unwanted assembly destruction. The IM dimension affords separation of the supramolecular ions by charge and collision cross-section (a function of size and shape). The mobility separated ions are subsequently identified by their mass-to-charge-ratios and isotope patterns in the orthogonal MS dimension. Finally, the gMS(2) dimension reveals bond breaking proclivities and disintegration pathways of the assemblies. The described methodology does not require high sample purity due to the dispersive nature of the IM and MS steps. Its utility is demonstrated with the comprehensive analysis of bisterpyridine-based metallomacrocycle mixtures and a tristerpyridine based complex with 3-D nanosphere-like architecture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.