In this paper, cross-linked polyethylene (XLPE) cables of the same batch from Factory A, which ran from 1 to 8 years in Jiangsu Province, are sampled. Some widely accepted aging characterization methods of XLPE cables such as the gel content test, differential scanning calorimetry (DSC) test, tensile test and hardness test are employed to obtain the physicochemical, mechanical and electrical properties of the samples. Then, some lifespan prediction parameters significantly correlated with operating time are obtained through correlation calculations. Finally, a prediction method is proposed to predict the operating time of XLPE cables from Factory A. The test results indicate that parameters including the gel content Cge, the crystallinity XC, tensile strength σ, ultimate elongation δ, the dielectric permittivity ε, and the dielectric loss Jtan are significantly correlated with operating time, which can be used in evaluating the aging degree of XLPE cables. Moreover, due to the high accuracy of the experimental verification, it turns out that the lifespan prediction method proposed in this paper can be used to determine the operating time of XLPE cables from Factory A in future research.
Long‐term thermal ageing might have impacts on the physicochemical properties of cross‐linked polyethene (XLPE) cables, thereby influencing their electrical behaviours, such as electrical treeing initiation and growth. The main objective of this work is to report the effects of thermal ageing on the electrical treeing behaviours (initiation and growth) in XLPE cable insulation. For this purpose, the electrical treeing initiation and growth test were performed in accelerated thermal samples. In addition, Differential Scanning Calorimetry and Fourier Transform Infrared Spectroscopy were utilised to investigate corresponding changes in the microstructures of materials. In addition, a correlation was established between electrical treeing behaviours and physicochemical properties during the thermal ageing process. Test results indicate that the thermal ageing process should be divided into three phases, and the re‐crystallisation reaction is considered the primary reason for the increase of average electrical tree initiation voltage (AETIV). Furthermore, the thermal ageing index Xc is correlated to AETIV and the propagation rate of the electrical tree. As equivalent relationships have been established between the relative decrease value w of indexes AETIV, the propagating rate and Xc, this method can be employed to predict the changing pattern of electrical treeing initiation voltage and the propagating rate in future research.
Photovoltaic (PV) power generation has highly penetrated in distribution networks, providing clean and sustainable energy. However, its uncertain and intermittent power outputs significantly impair network operation, leading to unexpected power loss and voltage fluctuation. To address the uncertainties, this paper proposes a multi-timescale affinely adjustable robust reactive power dispatch (MTAAR-RPD) method to reduce the network power losses as well as alleviate voltage deviations and fluctuations. The MTAAR-RPD aims to coordinate on-load tap changers (OLTCs), capacitor banks (CBs), and PV inverters through a three-stage structure which covers multiple timescales of "hour-minute-second". The first stage schedules CBs and OLTCs hourly while the second stage dispatches the base reactive power outputs of PV inverter every 15 min. The third stage affinely adjusts the inverter reactive power output based on an optimized Q-P droop controller in real time. The three stages are coordinately optimized by an affinely adjustable robust optimization method. A solution algorithm based on a cutting plane algorithm is developed to solve the optimization problem effectively. The proposed method is verified through theoretical analysis and numerical simulations.Peishuai Li received the B.E. degree in automation engineering from Qingdao University, Qingdao, China, in 2010, the M.E. degree in electrical power system and its automation form
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.