Expanded Polypropylene (EPP) foam has been widely recognized as an energy absorbing material, and it is routinely used for variety of industrial applications. However, EPP foam has a relatively limited scope in the construction industry, especially for load-bearing applications. To address this aspect, the mechanical behaviour of EPP foam was examined under unconfined conditions in this study, and the effects of different preloading/precompression strain histories (5% to 60%) on the stress-strain response and strain energy characteristics of EPP were evaluated. Additionally, the stress-strain recovery behaviour of EPP foam having different preloading histories was also studied while considering the effects of recovery time after preloading (0 to 28 Days). The results suggest that EPP foam subjected to different preloading histories has identical patterns of stress-strain response as of other conventional closed-cell polymeric foams, such as Expanded Polystyrene (EPS) foam, and EPP can adequately be used for load-bearing applications under the recommended design limits. Furthermore, noticeable recovery in the stress-strain response of EPP was also witnessed during the initial 14 days after preloading. Based on these findings, it is anticipated that the promising stress-strain recovery characteristics of EPP foam enable it to be reused, even after experiencing large in-situ deformations.
Gypsum is regarded as an environmentally friendly binding material and is widely used to enhance the engineering properties of soft fine-grained soils. However, the time-dependent strength and deformation characteristics of fine-grained soils stabilised with gypsum have not yet been thoroughly investigated and rational evaluation of these characteristics will assist in the formulation of cost-effective and reliable design approaches. In this study, the time-dependent mechanical behaviours of gypsum-mixed fine-grained soil (GMFS) specimens were investigated under unconfined monotonic loading conditions, considering ageing periods of 3–90 days and five different loading rates (LR = 0.0005–1.0%/min). The results revealed that the unconfined compressive strength and stiffness of the GMFS specimens initially decreased with ageing and finally became stable after 14 days and 28 days of ageing for water/gypsum ratios of 1.30 and 1.60, respectively. Furthermore, the strength and stiffness of the GMFS specimens increased with an increase in LR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.