Detecting and classifying vehicles as objects from images and videos is challenging in appearance-based representation, yet plays a significant role in the substantial real-time applications of Intelligent Transportation Systems (ITSs). The rapid development of Deep Learning (DL) has resulted in the computer-vision community demanding efficient, robust, and outstanding services to be built in various fields. This paper covers a wide range of vehicle detection and classification approaches and the application of these in estimating traffic density, real-time targets, toll management and other areas using DL architectures. Moreover, the paper also presents a detailed analysis of DL techniques, benchmark datasets, and preliminaries. A survey of some vital detection and classification applications, namely, vehicle detection and classification and performance, is conducted, with a detailed investigation of the challenges faced. The paper also addresses the promising technological advancements of the last few years.
Out-of-school children (OSC) surveys are conducted annually throughout Pakistan, and the results show that the literacy rate is increasing gradually, but not at the desired speed. Enrollment campaigns and targets system of enrollment given to the schools required a valuable model to analyze the enrollment criteria better. In existing studies, the research community mainly focused on performance evaluation, dropout ratio, and results, rather than student enrollment. There is a great need to develop a model for analyzing student enrollment in schools. In this proposed work, five years of enrollment data from 100 schools in the province of Punjab (Pakistan) have been taken. The significant features have been extracted from data and analyzed through machine learning algorithms (Multiple Linear Regression, Random Forest, and Decision Tree). These algorithms contribute to the future prediction of school enrollment and classify the school’s target level. Based on these results, a brief analysis of future registrations and target levels has been carried out. Furthermore, the proposed model also facilitates determining the solution of fewer enrollments in school and improving the literacy rate.
This paper uses a neural network approach transformer of taxi driver behavior to predict the next destination with geographical factors. The problem of predicting the next destination is a well-studied application of human mobility, for reducing traffic congestion and optimizing the electronic dispatching system’s performance. According to the Intelligent Transport System (ITS), this kind of task is usually modeled as a multi-class problem. We propose the novel model Deep Wide Spatial-Temporal-Based Transformer Networks (DWSTTNs). In our approach, the encoder and decoder are the transformer’s primary units; with the help of Location-Based Social Networks (LBSN), we encode the geographical information based on visited semantic locations. In particular, we trained our model for the exact longitude and latitude coordinates to predict the next destination. The benefit in the real world of this kind of research is to reduce the customer waiting time for a ride and driver waiting time to pick up a customer. Taxi companies can also optimize their management to improve their company’s service, while urban transport planner can use this information to better plan the urban traffic. We conducted extensive experiments on two real-word datasets, Porto and Manhattan, and the performance was improved compared to the previous models.
Ethereum smart contracts have been gaining popularity toward the automation of so many domains, i.e., FinTech, IoT, and supply chain, which are based on blockchain technology. The most critical domain, e.g., FinTech, has been targeted by so many successful attacks due to its financial worth of billions of dollars. In all attacks, the vulnerability in the source code of smart contracts is being exploited and causes the steal of millions of dollars. To find the vulnerability in the source code of smart contracts written in Solidity language, a state-of-the-art work provides a lot of solutions based on dynamic or static analysis. However, these tools have shown a lot of false positives/negatives against the smart contracts having complex logic. Furthermore, the output of these tools is not reported in a standard way with their actual vulnerability names as per standards defined by the Ethereum community. To solve these problems, we have introduced a static analysis tool, SESCon (secure Ethereum smart contract), applying the taint analysis techniques with XPath queries. Our tool outperforms other analyzers and detected up to 90% of the known vulnerability patterns. SESCon also reports the detected vulnerabilities with their titles, descriptions, and remediations as per defined standards by the Ethereum community. SESCon will serve as a foundation for the standardization of vulnerability detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.