Over the past few years, numerous studies and research articles have been published in the medical literature review domain. The topics covered by these researches included medical information retrieval, disease statistics, drug analysis, and many other fields and application domains. In this paper, we employ various text mining and data analysis techniques in an attempt to discover trending topics and topic concordance in the healthcare literature and data mining field. This analysis focuses on healthcare literature and bibliometric data and word association rules applied to 1945 research articles that had been published between the years 2006 and 2019. Our aim in this context is to assist saving time and effort required for manually summarizing large-scale amounts of information in such a broad and multi-disciplinary domain. To carry out this task, we employ topic modeling techniques through the utilization of Latent Dirichlet Allocation (LDA), in addition to various document and word embedding and clustering approaches. Findings reveal that since 2010 the interest in the healthcare big data analysis has increased significantly, as demonstrated by the five most commonly used topics in this domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.