Context: Information Technology consumes up to 10% of the world's electricity generation, contributing to CO2 emissions and high energy costs. Data centers, particularly databases, use up to 23% of this energy. Therefore, building an energy-efficient (green) database engine could reduce energy consumption and CO2 emissions.Goal: To understand the factors driving databases' energy consumption and execution time throughout their evolution.Method: We conducted an empirical case study of energy consumption by two MySQL database engines, InnoDB and MyISAM, across 40 releases. We examined the relationships of four software metrics to energy consumption and execution time to determine which metrics reflect the greenness and performance of a database.Results: Our analysis shows that database engines' energy consumption and execution time increase as databases evolve. Moreover, the Lines of Code metric is correlated moderately to strongly with energy consumption and execution time in 88% of cases.Conclusions: Our findings provide insights to both practitioners and researchers. Database administrators may use them to select a fast, green release of the MySQL database engine. MySQL database-engine developers may use the software metric to assess products' greenness and performance. Researchers may use our findings to further develop new hypotheses or build models to predict greenness and performance of databases.
Currently, there is a big increase in the usage of data analytics applications and services because of the growth in the data produced from different sources. The QoS properties such as response time and latency of these services are important factors to decide which services to select. As a result of IT expansion, energy consumption has become a big issue. Therefore, establishing a QoS-based web service recommender system that considers energy consumption as one of the essential QoS properties represents a significant step towards selecting the energy efficient web services. This dissertation presents an experimental study on energy consumption levels and latency behavior collected from a set of data mining web services running on different datasets. Our study shows that there is a strong relation between the dataset properties and the QoS properties. Based on the findings from this study, a recommender system is built which considers three dimensions (user, service, dataset). The energy consumption values of candidate services invoked by specific users can be predicted for a given dataset. Afterwards, these services can be ranked according to their predicted energy values and presented to users. We propose three approaches to build our recommender system and we treat it as a context-aware recommendation problem. The dataset is considered as contextual information and we use a context-aware matrix factorization model to predict energy values. In the first approach, we adopt the pre-filtering model where the contextual information serves as a query for filtering relevant rating data. In the second approach, we propose a new method for the pre-filtering implementation. Finally, in the last approach, we adopt the contextual modeling method and we explore different ways of representing dataset information as contextual factors to investigate their impacts on the recommendation accuracy. We compare the proposed approaches with the baseline approaches and the results show the effectiveness of the proposed ones. Also, we compare the performance of the three approaches to discover the best-fit approach when being measured using different metrics. Both prediction and recommendation accuracy of the proposed approaches are significantly better than the baseline models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.