In terms of the Internet and communication, security is the fundamental challenging aspect. There are numerous ways to harm the security of internet users; the most common is phishing, which is a type of attack that aims to steal or misuse a user’s personal information, including account information, identity, passwords, and credit card details. Phishers gather information about the users through mimicking original websites that are indistinguishable to the eye. Sensitive information about the users may be accessed and they might be subject to financial harm or identity theft. Therefore, there is a strong need to develop a system that efficiently detects phishing websites. Three distinct deep learning-based techniques are proposed in this paper to identify phishing websites, including long short-term memory (LSTM) and convolutional neural network (CNN) for comparison, and lastly an LSTM–CNN-based approach. Experimental findings demonstrate the accuracy of the suggested techniques, i.e., 99.2%, 97.6%, and 96.8% for CNN, LSTM–CNN, and LSTM, respectively. The proposed phishing detection method demonstrated by the CNN-based system is superior.
In Saudi Arabia, all high school graduates who want join local universities have to go through a preparatory year before selecting their specific specialization/major. One of the most concerning issues for those fresh undergraduate college students is the selection of their specialization. College specialization selection is critical for them, as their academic and career future will be affected by this decision. An un-suitable specialization selection will have unfortunate consequences, not only on the students' future but also on the university’s resources and budget. This paper sug-gests a solution to this problem by introducing a preliminary study of a recommend-er system (RS), which will recommend the appropriate specialization for the students based on various tests and grades during the preparatory year at King Abdulaziz University (KAU). The proposed system guides students through their specialization selection process based on their abilities. The collaborative filtering technique was used to build the RS and K-fold cross-validation was adopted to evaluate its accura-cy and performance. The results showed the prediction of a specialization for each student with good accuracy ratio. These promising initial results provide a feasible solution to assess this issue further in future studies.
The common view of requirements engineering consists of requirement elicitation, specification, validation, and evolution. Requirement elicitation is a significant stage to assure the quality of the requirement documentations and would affect the project success or failure. There are different techniques to elicit the requirements. Each technique has its advantages and disadvantages. Thus, it is important to adopt more than one kind of technique to describe a system clearly from different viewpoints. This study prospected some of the research papers in the same field to display the requirements elicitation techniques that are used in developing mobile applications from a variety of research disciplines. It suggests some requirements elicitation concepts to guide software engineers in selecting the techniques according to customers' needs and to show the common challenges that they face.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.