Project delays are the major problems tackled by the construction sector owing to the associated complexity and uncertainty in the construction activities. Artificial Intelligence (AI) models have evidenced their capacity to solve dynamic, uncertain and complex tasks. The aim of this current study is to develop a hybrid artificial intelligence model called integrative Random Forest classifier with Genetic Algorithm optimization (RF-GA) for delay problem prediction. At first, related sources and factors of delay problems are identified. A questionnaire is adopted to quantify the impact of delay sources on project performance. The developed hybrid model is trained using the collected data of the previous construction projects. The proposed RF-GA is validated against the classical version of an RF model using statistical performance measure indices. The achieved results of the developed hybrid RF-GA model revealed a good resultant performance in terms of accuracy, kappa and classification error. Based on the measured accuracy, kappa and classification error, RF-GA attained 91.67%, 87% and 8.33%, respectively. Overall, the proposed methodology indicated a robust and reliable technique for project delay prediction that is contributing to the construction project management monitoring and sustainability.Sustainability 2020, 12, 1514 2 of 14 in terms of litigation, dispute and arbitration [5]. Delays are caused by many sources and factors such as the owner [6,7], designer [3,8], contractor [4,7], materials [4,7], project [7,8], labor [9] and external factors [3,10]. Literature ReviewThe prediction of project delay based on internal and external sources can help project managers to provide an accurate forecast of the project schedule, and this can assist a proactive management approach in the construction project [11]. Construction projects are dynamic and complex, included a huge number of project stockholders, feedback processes and non-linear relationships [12]. The existence of a delay problem is related to interdependent factors that affect the construction project and the complexity and uncertainty of construction activities. Thus, providing of an efficient tool for analyzing delay factors is key for estimating an accurate duration in construction projects [11].By recalling previous studies, Chan (2001) used regression analysis to identify time-cost relationships for building projects in Malaysia [2]. This approach was developed for managers and owners to estimate the average time that is required for project delivery. Chan and Chan (2004) performed multiple regression exercises to analyze data related to the time performance of construction projects [13]. The results indicated that multiple regression was used as a useful method to predict time performance in construction projects. Rezaie et al. (2007) used Monte Carlo analysis to investigate the effects of uncertainties on the schedule performance [14]. The results revealed that this method is a good tool to simulate the relationship of uncertainties of construct...
The hydrological process has a dynamic nature characterised by randomness and complex phenomena. The application of machine learning (ML) models in forecasting river flow has grown rapidly. This is owing to their capacity to simulate the complex phenomena associated with hydrological and environmental processes. Four different ML models were developed for river flow forecasting located in semiarid region, Iraq. The effectiveness of data division influence on the ML models process was investigated. Three data division modeling scenarios were inspected including 70%–30%, 80%–20, and 90%–10%. Several statistical indicators are computed to verify the performance of the models. The results revealed the potential of the hybridized support vector regression model with a genetic algorithm (SVR-GA) over the other ML forecasting models for monthly river flow forecasting using 90%–10% data division. In addition, it was found to improve the accuracy in forecasting high flow events. The unique architecture of developed SVR-GA due to the ability of the GA optimizer to tune the internal parameters of the SVR model provides a robust learning process. This has made it more efficient in forecasting stochastic river flow behaviour compared to the other developed hybrid models.
Accurate and reliable prediction of Perfobond Rib Shear Strength Connector (PRSC) is considered as a major issue in the structural engineering sector. Besides, selecting the most significant variables that have a major influence on PRSC in every important step for attaining economic and more accurate predictive models, this study investigates the capacity of deep learning neural network (DLNN) for shear strength prediction of PRSC. The proposed DLNN model is validated against support vector regression (SVR), artificial neural network (ANN), and M5 tree model. In the second scenario, a comparable AI model hybridized with genetic algorithm (GA) as a robust bioinspired optimization approach for optimizing the related predictors for the PRSC is proposed. Hybridizing AI models with GA as a selector tool is an attempt to acquire the best accuracy of predictions with the fewest possible related parameters. In accordance with quantitative analysis, it can be observed that the GA-DLNN models required only 7 input parameters and yielded the best prediction accuracy with highest correlation coefficient (R = 0.96) and lowest value root mean square error (RMSE = 0.03936 KN). However, the other comparable models such as GA-M5Tree, GA-ANN, and GA-SVR required 10 input parameters to obtain a relatively acceptable level of accuracy. Employing GA as a feature parameter selection technique improves the precision of almost all hybrid models by optimally removing redundant variables which decrease the efficiency of the model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.