The current study involved collecting 225 samples of different age groups and from different clinical sources (burns and wounds). Selective and differential media, Microscopic Examination, Biochemical test, IMVIC tests, and Vitek 2 system were used to identify the bacterial species. The results showed that the bacterial isolates were distributed on Staphylococcus aureus, Pseudomonas aeruginosa, Staphylococcus epidermidis, Klebsiella pneumoniae, Escherichia coli and Proteus mirabilis. All isolates were multidrug-resistant to 12 antibiotics from different classes and according to the susceptibility test, isolate distinction in 2 groups (75 %) of MDR isolates were resistant to (5-9) antibiotics, while (25 %) were susceptible. Zinc Oxide nanoparticles synthesized was done by a green method with Zinc acetate dehydrate as a precursor and aqueous extract of Camellia sinensisas a reducing agent, color-changing to pale-white was an indication of the formation of ZnONPs. The average size and shape of the nanoparticles were detected by using Atomic Force Microscopy (AFM) which was 40 nm with a spherical shape. Scanning Electron Microscopy (SEM) showed the ZnO NPs have spherical, radial, and cylindrical structures. The wavelength range was measured by Ultraviolet-visible spectroscopy (UV-Vis) for monitoring the formation of the nanoparticles, which showed a sharp peak at 325 nm. The average crystallite size of ZnONPs was estimated using Debye Scherrer’s formula were 20-40nm by using X-ray Diffraction (XRD). Fourier-transform infrared spectroscopy (FT-IR) spectra have been used for ZnONPs to detect the functional groups found in the synthesis process via green tea extract. Keyword: ZnO NPs. Biosynthesis, Camellia sinensis, Green tea, Antibacterial activity
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.