Activated protein C (APC) resistance is a common risk factor for venous thromboembolism (VTE) attributed to various mechanisms, including factor V Leiden (FVL) polymorphism. FVL is considered responsible for up to 95% of APC resistance; however, other factor V polymorphisms and elevated factor VIII levels also have been implicated. We assessed whether additional mechanisms contribute to APC resistance in a blinded case-control study of 65 subjects by measuring APC resistance using 3 methods: 2 activated partial thromboplastin time-based methods with and without dilution in factor V-deficient plasma and 1 Russell viper venom-based assay (RVV). Without factor V-deficient plasma, 24 subjects were APC resistant; with factor V-deficient plasma, the assay identified fewer APC-resistant subjects, as did RVV. All assays detected the 7 heterozygous FVL subjects. Thirteen subjects had factor VIII levels above 150% (1.50). After excluding subjects with FVL or elevated factor VIII levels, 4 subjects still had APC resistance. VTE risk trended higher for subjects with APC resistance in the absence of FVL. Measurement of APC resistance without dilution in factor V-deficient plasma is needed to assess for potentially important thrombotic risk factors other than FVL.
Activated protein C (APC) resistance is a common risk factor for venous thromboembolism (VTE) attributed to various mechanisms, including factor V Leiden (FVL) polymorphism. FVL is considered responsible for up to 95% of APC resistance; however, other factor V polymorphisms and elevated factor VIII levels also have been implicated. We assessed whether additional mechanisms contribute to APC resistance in a blinded case-control study of 65 subjects by measuring APC resistance using 3 methods: 2 activated partial thromboplastin time-based methods with and without dilution in factor V-deficient plasma and 1 Russell viper venom-based assay (RVV). Without factor V-deficient plasma, 24 subjects were APC resistant; with factor V-deficient plasma, the assay identified fewer APC-resistant subjects, as did RVV. All assays detected the 7 heterozygous FVL subjects. Thirteen subjects had factor VIII levels above 150% (1.50). After excluding subjects with FVL or elevated factor VIII levels, 4 subjects still had APC resistance. VTE risk trended higher for subjects with APC resistance in the absence of FVL. Measurement of APC resistance without dilution in factor V-deficient plasma is needed to assess for potentially important thrombotic risk factors other than FVL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.