Community Question Answering (CQA) websites provide a rapidly growing source of information in many areas. This rapid growth, while offering new opportunities, puts forward new challenges. In most CQA implementations there is little effort in directing new questions to the right group of experts. This means that experts are not provided with questions matching their expertise, and therefore new matching questions may be missed and not receive a proper answer. We focus on finding experts for a newly posted question. We investigate the suitability of two statistical topic models for solving this issue and compare these methods against more traditional Information Retrieval approaches. We show that for a dataset constructed from the Stackoverflow website, these topic models outperform other methods in retrieving a candidate set of best experts for a question. We also show that the Segmented Topic Model gives consistently better performance compared to the Latent Dirichlet Allocation Model.
Standard collaborative filtering approaches for top-N recommendation are biased toward popular items. As a result, they recommend items that users are likely aware of and underrepresent long-tail items. This is inadequate, both for consumers who prefer novel items and because concentrating on popular items poorly covers the item space, whereas high item space coverage increases providers' revenue.We present an approach that relies on historical rating data to learn user long-tail novelty preferences. We integrate these preferences into a generic re-ranking framework that customizes balance between accuracy and coverage. We empirically validate that our proposed framework increases the novelty of recommendations. Furthermore, by promoting long-tail items to the right group of users, we significantly increase the system's coverage while scalably maintaining accuracy. Our framework also enables personalization of existing non-personalized algorithms, making them competitive with existing personalized algorithms in key performance metrics, including accuracy and coverage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.