Despite recent advances in the area of pairing-friendly Non-Interactive Zero-Knowledge proofs, there have not been many efficiency improvements in constructing arguments of satisfiability of quadratic (and larger degree) equations since the publication of the Groth-Sahai proof system (JoC'12). In this work, we address the problem of aggregating such proofs using techniques derived from the interactive setting and recent constructions of SNARKs. For certain types of quadratic equations, this problem was investigated before by González et al. (ASI-ACRYPT'15). Compared to their result, we reduce the proof size by approximately 50% and the common reference string from quadratic to linear, at the price of using less standard computational assumptions. A theoretical motivation for our work is to investigate how efficient NIZK proofs based on falsifiable assumptions can be. On the practical side, quadratic equations appear naturally in several cryptographic schemes like shuffle and range arguments.
This paper constructs unbounded simulation sound proofs for boolean circuit satisfiability under standard assumptions with proof size O(n + d) bilinear group elements, where d is the depth and n is the input size of the circuit. Our technical contribution is to add unbounded simulation soundness to a recent NIZK of González and Ràfols (ASI-ACRYPT'19) with very small overhead. Our new scheme can be used to construct the most efficient Signature-of-Knowledge based on standard assumptions that also can be composed universally with other cryptographic protocols/primitives.
Zero-knowledge succinct non-interactive arguments of knowledge (zk-SNARKs) are the most efficient proof systems in terms of proof size and verification. Currently, Groth's scheme from EUROCRYPT 2016, Groth16, is the state-of-the-art and is widely deployed in practice. Groth16 is originally proven to achieve knowledge soundness, which does not guarantee the non-malleability of proofs. There has been considerable progress in presenting new zk-SNARKs or modifying Groth16 to efficiently achieve strong Simulation extractability, which is shown to be a necessary requirement in some applications. In this paper, we revise the Random oracle based variant of Groth16 proposed by Bowe and Gabizon, BG18, the most efficient one in terms of prover efficiency and CRS size among the candidates, and present a more efficient variant that saves 2 pairings in the verification and 1 group element in the proof. This supersedes our preliminary construction, presented in CANS 2020 (Baghery et al. in CANS 20, volume 12579 of LNCS, Springer, Heidelberg. pp 453-461, 2020), which saved 1 pairing in the verification, and was proven in the generic group model. Our new construction also improves on BG18 in that our proofs are in the algebraic group model with Random Oracles and reduces security to standard computational assumptions in bilinear groups (as opposed to using the full power of the generic group model (GGM)). We implement our proposed simulation extractable zk-SNARK (SE zk-SNARK) along with BG18 in the Arkworks library, and compare the efficiency of our scheme with some related works. Our empirical experiences confirm that our SE zk-SNARK is more efficient than all previous simulation extractable (SE) schemes in most dimensions and it has very close efficiency to the original Groth16.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.