In this paper, we study the singular fourth-order differential equation with a deviating argument:By using Mawhin's continuation theorem and some analytic techniques, we establish some criteria to guarantee the existence of positive periodic solutions. The significance of this paper is that g has a strong singularity at x = 0 and satisfies a small force condition at x = ∞, which is different from the known ones in the literature.
In this paper, we study the existence of at least two geometrically distinct periodic solutions for a differential equation which models the planar oscillations of a dumbbell satellite under the influence of the gravity field generated by an oblate body, considering the effect of the zonal harmonic parameter J 2. And at least one of such two periodic solutions is unstable. The proof is based on the version of the Poincaré-Birkhoff theorem due to Franks. Moreover, we also study the existence and multiplicity of periodic solutions and subharmonic solutions with winding number.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.