Background Neoadjuvant immunotherapy is emerging as novel effective intervention in lung cancer, but study to unearth effective surrogates indicating its therapeutic outcomes is limited. We investigated the genetic changes between non-small cell lung cancer (NSCLC) patients with varied response to neoadjuvant immunotherapy and discovered highly potential biomarkers with indicative capability in predicting outcomes. Methods In this study, 3 adenocarcinoma and 11 squamous cell carcinoma NSCLC patients were treated by neoadjuvant immunotherapy with variated regimens followed by surgical resection. Treatment-naive FFPE or fresh tissues and blood samples were subjected to whole-exome sequencing (WES). Genetic alternations were compared between differently-responded patients. Findings were further validated in multiple public cohorts. Results DNA damage repair (DDR)-related InDel signatures and DDR-related gene mutations were enriched in better-responded patients, i.e., major pathological response (MPR) group. Besides, MPR patients exhibited provoked genome instability and unique homologous recombination deficiency (HRD) events. By further inspecting alternation status of homology-dependent recombination (HR) pathway genes, the clonal alternations were exclusively enriched in MPR group. Additionally, associations between HR gene alternations, percentage of viable tumor cells and HRD event were identified, which orchestrated tumor mutational burden (TMB), mutational intratumor heterogeneity (ITH), somatic copy number alteration (SCNA) ITH and clonal neoantigen load in patients. Validations in public cohorts further supported the generality of our findings. Conclusions We reported for the first time the association between HRD event and enhanced neoadjuvant immunotherapy response in lung cancer. The power of HRD event in patient therapeutic stratification persisted in multifaceted public cohorts. We propose that HR pathway gene status could serve as novel and additional indicators guiding immune-neoadjuvant and immunotherapy treatment decisions for NSCLC patients.
Liver is the most common site where metastatic lesions of colorectal cancer (CRC) arise. Although researches have shown mutations in driver genes, copy number variations (CNV) and alterations in relevant signaling pathways promoted the tumor evolution and immune escape during colorectal liver metastasis (CLM), the underlying mechanism remains largely elusive. Tumor and matched metastatic tissues were collected from 16 patients diagnosed with colorectal cancer and subjected to whole-exome sequencing (WES) and RNA sequencing (RNA-seq) for studying colorectal cancer clonal evolution and immune escape during CLM. Shared somatic mutations between primary and metastatic tissues with a commonly observed subclonal-clonal (S-C) changing pattern indicated a common clonal origin between two lesions. The recurrent mutations with S-C changing pattern included those in KRAS, SYNE1, CACNA1H, PCLO, FBXL2, and DNAH11. The main CNV events underwent clonal-clonal evolution (20q amplification (amp), 17p deletion (del), 18q del and 8p del), subclonal-clonal evolution (8q amp, 13q amp, 8p del) and metastasis-specific evolution (8q amp) during the process of CLM. In addition, we revealed a potential mechanism of tumor cell immune escape by analyzing human leukocytes antigens (HLA) related clonal neoantigens and immune cell components in CLM. Our study proposed a novel liver metastasis-related evolutionary process in colorectal cancer and emphasized the theory of neo-immune escape in colorectal liver metastasis.
Platinum-based chemotherapy is still the standard of care after cytoreductive surgery in the first-line treatment for epithelial ovarian cancer. This study aims to integrate novel biomarkers for predicting platinum sensitivity in EOC after initial cytoreductive surgery precisely. To this end, 60 patients were recruited from September 2014 to October 2019. Based on the duration of progress-free survival, 44 and 16 patients were assigned to platinum-sensitive and platinum-resistant group, respectively. Next generation sequencing was performed to dissect the genomic features of ovarian tumors obtained from surgery. Multiple genomic variations were compared between two groups, including single-nucleotide variant, single base or indel signature, loss of heterozygosity (LOH), whole-genome duplication (WGD), and others. The results demonstrated that patients with characteristics including positive SBS10a signature (p < 0.05), or FAM175A LOH (p < 0.01), or negative WGD (p < 0.01) were significantly enriched in platinum-sensitive group. Consistently, patients with positive SBS10a signature (15.8 vs. 10.1 months, p < 0.05), or FAM175A LOH (16.5 vs. 9.2 months, p < 0.05), or negative WGD (16.5 vs. 9.1 months, p < 0.05) have significantly longer PFS than those without these genetic features. By integrating these three biomarkers, a lasso regression model was employed to train and test for all patients, with the AUC value 0.864 in platinum sensitivity prediction. Notably, 388 ovarian cancer patients from TCGA dataset were leveraged as independent validation cohort with AUC value 0.808, suggesting the favorable performance and reliability of this model.
Context Malignant thyroid tumor with distant metastasis is associated with poor outcome. Early detection of the distant metastasis is of great clinical importance. Objective Thyroid tumor infiltrated T cell can be served as a biomarker for monitoring metastasis. Design Retrospective analysis was performed of clinical samples from patients collected between 2012 to 2018, using TCR-seq for clinical exploration. Setting Zhejiang Cancer Hospital. Patients 68 patients with PTC (distinct metastatic status) and 21 patients with benign nodules were enrolled. All patients had not received any treatment before surgery. Main Outcome Measure The characteristics of TCRβ CDR3 for each patient were determined by High-throughput sequencing. Results The TCRβ diversity of malignant tumors is significantly higher than benign nodules in both blood and tumor samples (Shannon index, blood, P < 0.01; tumor, P < 0.001). The malignant tumors with distant metastasis or invasiveness showed lower TCRβ diversity than non-metastasis (Shannon index, P < 0.01) or non-invasive (Shannon index, P < 0.01) malignant tumors. Analysis of the Morisita-Horn similarity index indicated that the significant TCRβ repertoires similarity between tumor and blood in distant metastatic patients (Comparison with Non-metastasis, P < 0.05). According to the discrepancy of the CDR3 among patients with different clinicopathological status, the classifier was constructed to discriminate distant metastatic individuals. The promising AUC value 83.8% was obtained with the number of overlapping CDR3 clonotypes. Conclusion The availability and reliability of TCR-seq render it prospective to translate these intrinsic attributes into clinical practice for monitoring distant metastasis in PTC patients.
Background: In East Asia, the number of patients with adenocarcinoma, especially those presenting with ground-glass nodules (GGNs), is gradually increasing. Family aggregation of pulmonary GGNs is not uncommon; however, genetic predisposition in these patients remains poorly understood and identification of genes involved in the cause of these early-stage lung cancers might contribute to understanding of the underlying mechanisms and potential prevention strategies.Methods: Fifty patients with early-stage lung adenocarcinoma (LUAD) presenting as GGNs and a firstdegree family history of lung cancer (FHLC) from 34 independent families were enrolled into this study. Germline mutations of these patients were analyzed with whole exome sequencing (WES) and compared with age-and sex-matched 39 patients with sporadic lung cancer and 689 local healthy people. We used a stepwise variant filtering strategy, gene-based burden testing, and enrichment analysis to investigate rare but potentially pathogenic heritable mutations. Somatic tumor mutations were analyzed to consolidate germline findings.Results: In total, 1,571 single nucleotide variants (SNVs) and 238 frameshifts with a minor allele frequency (MAF) <0.01, which were rare, recurrent, and potentially damaging candidates, were finally identified through the filtering in the GGN cohort. Pathway analysis showed the extracellular matrix to be the top dysregulated pathway. Gene-based burden testing of these highly disruptive risk-conferring heritable variants showed that MSH5 [odds ratio (
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.