With the enhancement of people’s environmental awareness, waterborne polyurethane (PU) paint—with its advantages of low release of volatile organic compounds (VOCs), low temperature flexibility, acid and alkali resistance, excellent solvent resistance and superior weather resistance—has made its application for wood furniture favored by the industry. However, due to its lower solid content and weak intermolecular force, the mechanical properties of waterborne PU paint are normally less than those of the traditional solvent-based polyurethane paint, which has become the key bottleneck restricting its wide applications. To this end, this study explores nanocellulose derived from biomass resources by the 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) oxidation method to reinforce and thus improve the mechanical properties of waterborne PU paint. Two methods of adding nanocellulose to waterborne PU—chemical addition and physical blending—are explored. Results show that, compared to the physical blending method, the chemical grafting method at 0.1 wt% nanocellulose addition results in the maximum improvement of the comprehensive properties of the PU coating. With this method, the tensile strength, elongation at break, hardness and abrasion resistance of the waterborne PU paint increase by up to 58.7%, ~55%, 6.9% and 3.45%, respectively, compared to the control PU; while the glossiness and surface drying time were hardly affected. Such exploration provides an effective way for wide applications of water PU in the wood industry and nanocellulose in waterborne wood coating.
Wood is susceptible to swelling deformation and decay fungi due to moisture adsorption that originates from the dynamic nanopores of the cell wall and the abundant hydroxyl groups in wood components. This study employed as a modifier maleic anhydride (MAn), with the help of acetone as solvent, to diffuse into the wood cell wall, bulk nanopores, and further chemically bond to the hydroxyl groups of wood components, reducing the numbers of free hydroxyl groups and weakening the diffusion of water molecules into the wood cell wall. The derived MAn-bulked wood, compared to the control wood, presented a reduction in water absorptivity (RWA) of ~23% as well as an anti-swelling efficiency (ASE) of ~39% after immersion in water for 228 h, and showed an improvement in decay resistance of 81.42% against white-rot fungus and 69.79% against brown-rot fungus, respectively. The method of combined cell wall bulking and hydroxyl group bonding could effectively improve the dimensional stability and decay resistance with lower doses of modifier, providing a new strategy for wood durability improvement.
Petroleum-based plastics, such as PP, PE, PVC, etc., have become an important source of environmental pollution due to their hard degradation, posing a serious threat to the human health. Isolating nanocellulose from abundant biomass waste resources and further integrating the nanocellulose into hydrophobic transparent film (i.e., nanopaper), to replace the traditional nondegradable plastic film, is of great significance for solving the problem of environmental pollution and achieving sustainable development of society. This study respectively extracted nanocellulose from the branches of Amorpha fruticosa Linn., wheat straw, and poplar residues via combined mechanical treatments of grinding and high-pressure homogenization. Among them, the nanocellulose derived from the Amorpha fruticosa has a finer structure, with diameter of about 10 nm and an aspect ratio of more than 500. With the nanocellulose as building block, we constructed hydrophilic nanopaper with high light transmittance (up to 90%) and high mechanical strength (tensile strength up to 110 MPa). After further hybridization by incorporating nano-silica into the nanopaper, followed by hydrophobic treatment, we built hydrophobic nanopaper with transmittance over 82% and a water contact angle of about 102° that could potentially replace transparent plastic film and has wide applications in food packaging, agricultural film, electronic device, and other fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.