For investigating the influence mechanism underlying ultrafine Ti(C, N) within micron Ti(C, N)-based cermets, three cermets including diverse ultrafine Ti(C, N) contents were employed. In addition, for the prepared cermets, their sintering process, microstructure, and mechanical properties were systematically studied. According to our findings, adding ultrafine Ti(C, N) primarily affects the densification and shrinkage behavior in the solid-state sintering stage. Additionally, material-phase and microstructure evolution were investigated under the solid-state stage from 800 to 1300 °C. Adding ultrafine Ti(C, N) enhanced the diffusion and dissolution behavior of the secondary carbide (Mo2C, WC, and (Ta, Nb)C) under a lower sintering temperature of 1200 °C. Further, as sintering temperature increased, adding ultrafine Ti(C, N) enhanced heavy element transformation behaviors in the binder phase and accelerated solid-solution (Ti, Me) (C, N) phase formation. When the addition of ultrafine Ti(C, N) reached 40 wt%, the binder phase had increased its liquefying speed. Moreover, the cermet containing 40 wt% ultrafine Ti(C, N) displayed superb mechanical performances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.