The concept of a self-governing smart plasma slat for active sense and control of flow separation and incipient wing stall is presented. The smart plasma slat design involves the use of an aerodynamic plasma actuator on the leading edge of a two-dimensional NACA 0015 airfoil in a manner that mimics the effect of a movable leading-edge slat of a conventional high-lift system. The self-governing system uses a single high-bandwidth pressure sensor and a feedback controller to operate the actuator in an autonomous mode with a primary function to sense and control incipient flow separation at the wing leading edge and to delay incipient stall. Two feedback control techniques are investigated. Wind tunnel experiments demonstrate that the aerodynamic effects of a smart actuator are consistent with the previously tested open-loop actuator, in that stall hysteresis is eliminated, stall angle is delayed by 7 deg, and a significant improvement in the lift-to-drag ratio is achieved over a wide range of angles of attack. These feedback control approaches provide a means to further reduce power requirements for an unsteady plasma actuator for practical air vehicle applications. The smart plasma slat concept is well suited for the design of low-drag, quiet, highlift systems for fixed-wing aircraft and rotorcraft.
The concept of a self-governing smart plasma slat for active sense and control of flow separation and incipient wing stall is presented. The smart plasma slat design involves the use of an aerodynamic plasma actuator on the leading edge of a two-dimensional NACA 0015 airfoil in a manner that mimics the effect of a movable leading-edge slat of a conventional high-lift system. The self-governing system uses a single high-bandwidth pressure sensor and a feedback controller to operate the actuator in an autonomous mode with a primary function to sense and control incipient flow separation at the wing leading edge and to delay incipient stall. Two feedback control techniques are investigated. Wind tunnel experiments demonstrate that the aerodynamic effects of a smart actuator are consistent with the previously tested open-loop actuator, in that stall hysteresis is eliminated, stall angle is delayed by 7 deg, and a significant improvement in the lift-to-drag ratio is achieved over a wide range of angles of attack. These feedback control approaches provide a means to further reduce power requirements for an unsteady plasma actuator for practical air vehicle applications. The smart plasma slat concept is well suited for the design of low-drag, quiet, highlift systems for fixed-wing aircraft and rotorcraft.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.