Despite a narrative that sees learning analytics (LA) as a field that aims to enhance student learning, few student-facing solutions have emerged. This can make it difficult for educators to imagine how data can be used in the classroom, and in turn diminishes the promise of LA as an enabler for encouraging important skills such as sense-making, metacognition, and reflection. We propose two learning design patterns that will help educators to incorporate LA into their teaching protocols: do-analyse-change-reflect, and active learning squared. We discuss these patterns with reference to a case study utilising the Connected Learning Analytics (CLA) toolkit, in three trials run over a period of 18 months. The results demonstrate that student-facing learning analytics is not just a future possibility, but an area that is ripe for further development.
We present a Connected Learning Analytics (CLA) toolkit, which enables data to be extracted from social media and imported into a Learning Record Store (LRS), as defined by the new xAPI standard. A number of implementation issues are discussed, and a mapping that will enable the consistent storage and then analysis of xAPI verb/object/activity statements across different social media and online environments is introduced. A set of example learning activities are proposed, each facilitated by the Learning Analytics beyond the LMS that the toolkit enables.
Abstract. Within online learning communities, receiving timely and meaningful insights into the quality of learning activities is an important part of an effective educational experience. Commonly adopted methods -such as the Community of Inquiry framework -rely on manual coding of online discussion transcripts, which is a costly and time consuming process. There are several efforts underway to enable the automated classification of online discussion messages using supervised machine learning, which would enable the real-time analysis of interactions occurring within online learning communities. This paper investigates the importance of incorporating features that utilise the structure of online discussions for the classification of "cognitive presence" -the central dimension of the Community of Inquiry framework focusing on the quality of students' critical thinking within online learning communities. We implemented a Conditional Random Field classification solution, which incorporates structural features that may be useful in increasing classification performance over other implementations. Our approach leads to an improvement in classification accuracy of 5.8% over current existing techniques when tested on the same dataset, with a precision and recall of 0.630 and 0.504 respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.