The use of phase space in medical linear accelerator Monte Carlo (MC) simulations significantly improves the execution time and leads to results comparable to those obtained from full calculations. The classical representation of phase space stores directly the information of millions of particles, producing bulky files. This paper presents a virtual source model (VSM) based on a reconstruction algorithm, taking as input a compressed file of roughly 800 kb derived from phase space data freely available in the International Atomic Energy Agency (IAEA) database. This VSM includes two main components; primary and scattered particle sources, with a specific reconstruction method developed for each. Energy spectra and other relevant variables were extracted from IAEA phase space and stored in the input description data file for both sources. The VSM was validated for three photon beams: Elekta Precise 6 MV/10 MV and a Varian TrueBeam 6 MV. Extensive calculations in water and comparisons between dose distributions of the VSM and IAEA phase space were performed to estimate the VSM precision. The Geant4 MC toolkit in multi-threaded mode (Geant4-[mt]) was used for fast dose calculations and optimized memory use. Four field configurations were chosen for dose calculation validation to test field size and symmetry effects, [Formula: see text] [Formula: see text], [Formula: see text] [Formula: see text], and [Formula: see text] [Formula: see text] for squared fields, and [Formula: see text] [Formula: see text] for an asymmetric rectangular field. Good agreement in terms of [Formula: see text] formalism, for 3%/3 mm and 2%/3 mm criteria, for each evaluated radiation field and photon beam was obtained within a computation time of 60 h on a single WorkStation for a 3 mm voxel matrix. Analyzing the VSM's precision in high dose gradient regions, using the distance to agreement concept (DTA), showed also satisfactory results. In all investigated cases, the mean DTA was less than 1 mm in build-up and penumbra regions. In regards to calculation efficiency, the event processing speed is six times faster using Geant4-[mt] compared to sequential Geant4, when running the same simulation code for both. The developed VSM for 6 MV/10 MV beams widely used, is a general concept easy to adapt in order to reconstruct comparable beam qualities for various linac configurations, facilitating its integration for MC treatment planning purposes.
A complete linac photon beam Monte Carlo dose calculation, even on a fast computer, requires generally a substantial computation time. The existing approaches developed to improve the efficiency are mainly based on the use of variance reduction techniques, phase space sources or virtual source models. The collimation of the simulated photon beam, involving particle transport through the multileaf collimator, considerably increases the calculation time especially for intensity modulation radiation therapy, where multiple small and medium field shapes are taking place. In this paper an improvement of a previous model will aim to significantly enhance the calculation efficiency for fast intensity modulation computations mainly by the use of an analytical collimator. The linac photon beam and multileaf collimator model is controlled by several parameters, such as, the geometrical dimensions of the primary collimator, the flattening filter and the number of leaves of the linac's collimator. The model uses only correlated energy spectra and particle fluence distributions derived from the International Atomic Energy Agency phase space files of Elekta PreciseVarian TrueBeam. RECEIVED
Background and purpose: This work aims to present the strategy to simulate a clinical linear accelerator based on the geometry provided by the manufacturer and summarize the corresponding experimental validation. Simulations were performed with the Geant4 Monte Carlo code under a grid computing environment. The objective of this contribution is reproducing therapeutic dose distributions in a water phantom with an accuracy less than 2%. Materials and methods: A Geant4 Monte Carlo model of an Elekta Synergy linear accelerator has been established, the simulations were launched in a large grid computing platform. Dose distributions are calculated for a 6 MV photon beam with treatment fields ranging from 5 × 5 cm2 to 20 × 20 cm 2 at a source - surface distance of 100 cm. Results: A high degree of agreement is achieved between the simulation results and the measured data, with dose differences of about 1.03% and 1.96% for the percentage depth dose curves and lateral dose profiles, respectively. This agreement is evaluated by the gamma index comparisons. Over 98% of the points for all simulations meet the restrictive acceptability criteria of 2%/2 mm. Conclusion: We have demonstrated the possibility to establish an accurate linac head Monte Carlo model for dose distribution simulations and quality assurance. Percentage depth dose curves and beam quality indices are in perfect agreement with the measured data with an accuracy of better than 2%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.