Anticipating meaningful actions in the environment is an essential function of the brain. Such predictive mechanisms originate from the motor system and allow for inferring actions from environmental affordances, and the potential to act within a specific environment. Using architecture, we provide a unique perspective on the ongoing debate in cognitive neuroscience and philosophy on whether cognition depends on movement or is decoupled from our physical structure. To investigate cognitive processes associated with architectural affordances, we used a mobile brain/body imaging approach recording brain activity synchronized to head-mounted displays. Participants perceived and acted on virtual transitions ranging from nonpassable to easily passable. We found that early sensory brain activity, on revealing the environment and before actual movement, differed as a function of affordances. In addition, movement through transitions was preceded by a motor-related negative component that also depended on affordances. Our results suggest that potential actions afforded by an environment influence perception.
Action is a medium of collecting sensory information about the environment, which in turn is shaped by architectural affordances. Affordances characterize the fit between the physical structure of the body and capacities for movement and interaction with the environment, thus relying on sensorimotor processes associated with exploring the surroundings. Central to sensorimotor brain dynamics, the attentional mechanisms directing the gating function of sensory signals share neuronal resources with motor-related processes necessary to inferring the external causes of sensory signals. Such a predictive coding approach suggests that sensorimotor dynamics are sensitive to architectural affordances that support or suppress specific kinds of actions for an individual. However, how architectural affordances relate to the attentional mechanisms underlying the gating function for sensory signals remains unknown. Here we demonstrate that event-related desynchronization of alpha-band oscillations in parieto-occipital and medio-temporal regions covary with the architectural affordances. Source-level time–frequency analysis of data recorded in a motor-priming Mobile Brain/Body Imaging experiment revealed strong event-related desynchronization of the alpha band to originate from the posterior cingulate complex, the parahippocampal region as well as the occipital cortex. Our results firstly contribute to the understanding of how the brain resolves architectural affordances relevant to behaviour. Second, our results indicate that the alpha-band originating from the occipital cortex and parahippocampal region covaries with the architectural affordances before participants interact with the environment, whereas during the interaction, the posterior cingulate cortex and motor areas dynamically reflect the affordable behaviour. We conclude that the sensorimotor dynamics reflect behaviour-relevant features in the designed environment.
Advancements in hardware technology and analysis methods allow more and more mobility in electroencephalography (EEG) experiments. Mobile Brain/Body Imaging (MoBI) studies may record various types of data such as motion or eye tracking in addition to neural activity. Although there are options available to analyze EEG data in a standardized way, they do not fully cover complex multimodal data from mobile experiments. We thus propose the BeMoBIL Pipeline, an easy-to-use pipeline in MATLAB that supports the time-synchronized handling of multimodal data. It is based on EEGLAB and fieldtrip and consists of automated functions for EEG preprocessing and subsequent source separation. It also provides functions for motion data processing and extraction of event markers from different data modalities, including the extraction of events from EEG using independent component analysis. The pipeline introduces a new robust method for region-of-interest-based group-level clustering of independent EEG components. Finally, the BeMoBIL Pipeline provides analytical visualizations at various processing steps, keeping the analysis transparent and allowing for quality checks of the resulting outcomes. All parameters and steps are documented within the data structure and can be fully replicated using the same scripts. This pipeline makes the processing and analysis of (mobile) EEG and body data more reliable and independent of the prior experience of the individual researchers, thus facilitating the use of EEG in general and MoBI in particular. It is an open-source project available for download at https://github.com/BeMoBIL/bemobil-pipeline which allows for community-driven adaptations in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.