SUMMARYPurpose: Herein we used electrophysiologic approaches in hippocampal area CA1 to estimate how morphine treatment alters the pentylenetetrazol (PTZ) effects. Methods: Hippocampal slices taken from either control animals or animals made dependent via chronic morphine administration were examined. Changes in the population spike and epileptiform amplitudes were used as indices to quantify the effects of PTZ exposure in the control and morphine-dependent slices. Hippocampal slices taken either from control animals or from animals made dependent upon morphine were exposed to PTZ, either with or without morphine, naloxone, or morphine + naloxone. Results: Morphine dependence increased a PTZinduced long-term potentiation (LTP) of the population spike in CA1 in vitro. This LTP was not found in rats that had spontaneously withdrawn morphine or withdrawn with naloxone in vivo after chronic morphine intake. Morphine or naloxone in vitro blocked the PTZ-induced LTP changes in control and morphine-dependent slices. However, PTZ-induced multiple population spikes (epileptiform activity) in CA1 was not blocked by naloxone. Discussion: It is concluded that dependence on morphine enhances PTZ-induced plastic and epileptic changes in CA1 excitability. We suggest that this model of neuronal activity in dependent slices could present an opportunity for studying the mechanisms underlying the increased likelihood of seizures in morphine users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.