The density classification task (DCT for short) is one of the most studied benchmark problems for analyzing emergent computations performed by cellular automata. Starting from the observation that the performance of the best known solutions is not stable towards initial configurations size; we propose in this paper, some new evolutionary mechanisms for designing new solutions with similar conceptual properties to the best known ones. The approach is based on varying the size of initial configurations which allows making comparisons and analysis between the different solutions. We show then through a set of numerical results that the proposed mechanism allows collecting solutions for the DCT more efficiently and with reduced efforts. Also, we show that the collected solutions are affected by configurations size variations, where only few of them are scalable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.