In the human body, emotion plays a critical function. Emotion is the most significant subject in human-machine interaction. In economic contexts, emotion detection is equally essential. Emotion detection is crucial in making any decision. Several approaches were explored to determine emotion in text. People increasingly use social media to share their views, and researchers strive to decipher emotions from this medium. There has been some work on emotion detection from the text and sentiment analysis. Although some work has been done in which emotion has been recognized, there are many things to improve. There is not much work to detect racism and analysis sentiment on Ukraine -Russia war. We suggested a unique technique in which emotion is identified, and the sentiment is analyzed. We utilized Twitter data to analyze the sentiment of the Ukraine-Russia war. Our system performs better than prior work. The study increases the accuracy of detecting emotion. To identify emotion and racism, we used classical machine learning and the ensemble method. An unsupervised approach and NLP modules were used to analyze sentiment. The goal of the study is to detect emotion and racism and also analyze the sentiment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.