Resistance to differential cryptanalysis is a fundamental security requirement for symmetric block ciphers, and recently, deep learning has attracted the interest of cryptography experts, particularly in the field of block cipher cryptanalysis, where the bulk of these studies are differential distinguisher based black-box attacks. This paper provides a deep learning-based decryptor technique for investigating the permutation primitives used in multimedia block cipher encryption algorithms.We aim to investigate how deep learning can be used to improve on previous classical works by employing cipher text pair aspects to maximize information extraction with low-data constraints by using convolution neural network features to discover the correlation among permutable atoms to extract the plain text from the ciphered text without any P-box expertise. The evaluation of testing methods has been conceptualized as a regression task in which neural networks are supervised using a variety of parameters such as variations between input and output, number of iterations, and P-box generation patterns. On the other hand, the transfer learning skills demonstrated in this study indicate that discovering suitable testing models from the ground is also achievable using our model with optimum prior cryptographic expertise, where we contribute the results of deep learning in the field of deep learning based differential cryptanalysis development.Various experiments were performed on discrete and continuous chaotic and non-chaotic permutation patterns, and the best-performing model had an MSE of 1.8217e −04 and an R 2 of 1, demonstrating the practicality of the suggested technique.
In this work, we propose a new approach for coordinating generated agents’ plans dynamically. The purpose is to take into consideration new conflicts introduced in new versions of agents’ plans. The approach consists in finding the best combination which contains one plan for each agent among its set of possible plans whose execution does not entail any conflict. This combination of plans is reconstructed dynamically, each time agents decide to change their plans to take into account unpredictable changes in the environment. This not only ensures that new conflicts are likely to be introduced in the new plans that are taken into account but also it allows agents to deal, solely, with the execution of their actions and not with the resolution of conflicts. For this, we use genetic algorithms where the proposed fitness function is defined based on the number of conflicts that agents can experience in each combination of plans. As part of our work, we used a concrete case to illustrate and show the usefulness of our approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.